Espectro de emision

Solo disponible en BuenasTareas
  • Páginas : 7 (1524 palabras )
  • Descarga(s) : 0
  • Publicado : 9 de mayo de 2011
Leer documento completo
Vista previa del texto
Introducción:

El experimento de Young, también denominado experimento de la doble rendija, fue realizado en 1801 por Thomas Young, en un intento de discernir sobre la naturaleza corpuscular u ondulatoria de la luz. Young comprobó un patrón de interferencias en la luz procedente de una fuente lejana al difractarse en el paso por dos rejillas, resultado que contribuyó a la teoría de lanaturaleza ondulatoria de la luz.

Teoría:

En el experimento de Young, un haz de luz se hace pasar a través de una ranura simple. Cuando una onda se encuentra con una barrera que posee una abertura muy pequeña, esta actúa como una fuente puntual de ondas secundarias, así, cada rendija actúa como una fuente lineal debido al principio de Huygens, el cual nos dice “Todos los puntos de un frente de ondasirven como fuentes puntuales de pequeñas ondas secundarias esféricas, que avanzan con velocidad y frecuencia igual a las de la onda primaria. Después de un tiempo t, la nueva posición del frente de onda será la de una superficie tangente a estas pequeñas ondas esféricas secundarias.”

El montaje básico del experimento de Young es el mostrado en el siguiente diagrama:

[pic]Fig.1

La figuraanterior describe la interferencia de las ondas que se traslapan. Sin embargo, es imposible ver la evidencia de interferencia, excepto en una pantalla de observación C, que intercepta la luz. Los puntos de interferencia constructiva forman filas brillantes, llamadas máximos, mientras que los puntos de interferencia destructiva forman regiones oscuras, llamadas mínimos. La formación y posición delas franjas viene determinada según la figura 1, donde la luz incide en la ranura [pic], formando así un haz de luz coherente, entonces el nuevo frente de onda incide sobre las ranuras [pic] y [pic], donde la luz es difractada, experimentando una red de interferencia en la pantalla C.
Para realizar el análisis de este fenómeno, trazamos como referencia un eje central desde el punto medio entre las2 ranuras a la pantalla C, después trazamos una línea del punto medio a un punto P arbitrario, a un ángulo θ con el eje central. Este punto intercepta la onda del rayo R1 desde la ranura de la parte inferior y al rayo R2 que sale de la ranura superior, como se ve en la figura siguiente:

[pic]Fig.2

Estas ondas están en fase al incidir sobre las 2 ranuras, puesto que son porciones de la ondaincidente. Sin embargo, al atravesar las ranuras, ambas ondas deben recorrer distancias diferentes para llegar al punto P, el cambio de diferencia de fase viene dado por la diferencia de longitud de camino recorrido ΔL. Cuando las 2 ondas llegan al punto P en número entero de longitudes de onda (ΔL=0), ambas ondas interfieren constructivamente entre si, si esto sucede para los rayos R1 y R2,entonces el punto P es una franja brillante, en cambio, si estas ondas interfieren con una diferencia de camino recorrido ΔL= λ /2 entonces R1 y R2 llegan al punto P fuera de fase e interfieren destructivamente ocasionando que P sea una franja oscura.

Si nos movemos de abajo hacia arriba de la pantalla C, entonces obtenemos puntos intercalados de interferencias constructiva y destructiva,determinados por la diferencia de longitud de la trayectoria ΔL. Para encontrar donde se formara una franja brillante u oscura debemos determinar el ángulo θ relacionándolo con ΔL. Si la longitud de la trayectoria de S2 a P es la misma que la longitud de trayectoria de b a P, entonces la diferencia de longitud de la trayectoria entre R1 y R2 es la distancia S1 a b.
Considerando que la distancia D>>d,podemos aproximar los rayos R1 y R2 son paralelos, y están a un ángulo θ respecto al eje central (Fig. 3).

[pic]Fig.3

Si observamos el triangulo formado por S1, S2 y b, podemos aproximar el ángulo formado en S2 como si fuera θ, entonces tendríamos para ese triangulo:

[pic] (Ec.1)

Para una franja brillante ΔL=0 en un número entero de...
tracking img