Ggesad

Solo disponible en BuenasTareas
  • Páginas : 34 (8465 palabras )
  • Descarga(s) : 0
  • Publicado : 7 de octubre de 2010
Leer documento completo
Vista previa del texto
Funciones y gr´ficas a
En este cap´ ıtulo estudiamos las propiedades de funciones, para lo cual usamos m´todos algebraicos y gr´ficos que incluyen la localizaci´n de puntos, e a o determinaci´n de simetr´ y desplazamientos horizontales y verticales. o ıas Introducimos un sistema de coordenadas rectangulares o cartesianas en un plano por medio dos rectas coordenadas perpendiculares llamadas ejescoordenados, que se cortan en el origen O (ver figura). La recta horizontal recibe el nombre de “eje x”y la vertical el de “eje y”; se indican con X e Y respectivamente. Con lo anterior, se trata de un plano coordenado o plano xy. Los ejes coordenados lo dividen en cuatro partes llamadas primero, segundo, tercero y cuarto cuadrantes (ver figura; I, II, III, IV). Los puntos de los ejes no pertenecen acuadrante alguno. Y
T

II

I

'

O III
c

EX

IV

A cada punto P de un plano xy se le puede asignar un par ordenado (a, b), seg´n se aprecia en la figura siguiente. El primer elemento del par ordenado u es llamado la coordenada x (o absisa) de P y el segundo elemento del par ordenado es llamado la coordenada y (u ordenada) de P . Decimos que P tiene coordenadas (a, b) y nosreferimos al punto (a, b) o al punto P (a, b). A 1

la inversa, todo par ordenado (a, b) determina al punto P con coordenadas a y b. Y
T

b

• (a, b)

'

O

E X

a

c

Podemos utilizar el teorema de Pit´goras para definir la distancia entre a dos puntos de un plano coordenado. Definici´n 1 La distancia d(P1 , P2 ) entre dos puntos cualesquiera P1 (x1 , y1 ) o y P2 (x2 , y2 ) de un planocoordenado es d(P1 , P2 ) = (x2 − x1 )2 + (y2 − y1 )2 .

La f´rmula anterior para defininir la distancia entre dos puntos del plano no o es la unica. Otra definici´n es: ´ o d(P1 , P2 ) = max{|x2 − x1 | , |y2 − y1 |}. Podemos hallar el punto medio de un segmento de recta de P1 (x1 , y1 ) a P2 (x2 , y2 ) como: x1 + x2 y1 + y2 , 2 2 .

N´tese que la coordenada x del punto medio corresponde alpromedio de las o coordenadas x. An´logamente para la coordenada y. a 2

Ejemplo: El punto medio M del segmento de recta de P1 (−2, 3) a P2 (4, −2) es M= −2 + 4 3 + (−2) , 2 2 = 1, 1 2

observemos, adicionalmente, que la distancia de P1 a M es igual a la distancia de P2 a M ya que: d(P1 , M ) = y d(P2 , M ) = As´ d(P1 , M ) = d(P2 , M ). ı, 1 (1 − 4)2 + ( + 2)2 = 2 9+ 25 . 4 1 (1 + 2)2 + ( − 3)2= 2 9+ 25 4

0.1

Gr´ficas de ecuaciones a

En ocasiones, dos cantidades se relacionan por medio de una ecuaci´n o o f´rmula con dos variables. Por ejemplo y = x2 ´ y 2 = 5x − 1. En esta o o secci´n, analizaremos c´mo representar geom´tricamente tal ecuaci´n con o o e o una gr´fica en un plano coordenado. La gr´fica puede servir para descubrir a a propiedades de las cantidades que no eranevidentes en la simple ecuaci´n. o Cada soluci´n (a, b) de una ecuaci´n en x y y tiene un punto P (a, b) en o o un plano coordenado. El conjunto de todos estos n´meros es la gr´fica de la u a ecuaci´n. o Para trazar la gr´fica de la ecuaci´n, ilustramos las caracter´ a o ısticas re levantes de la gr´fica de un plano coordenado. En casos sencillos se traza a localizando unos cuantos puntos, si los hay. Conuna ecuaci´n complicada, o la ubicaci´n de puntos puede dar muy poca informaci´n sobre la gr´fica. En o o a 3

tales casos, conviene utilizar m´todos de c´lculo. e a Ejemplo: Trazar la gr´fica de la ecuaci´n y = 2x − 1. a o Deseamos encontrar los puntos (x, y) de un plano coordenado que corres pondan a las soluciones de la ecuaci´n. Es util anotar las coordenadas de o ´ varios de tales puntos enuna tabla, donde para cada x obtenemos el valor de y para y = 2x − 1: x y -3 -7 -2 -1 0 1 2 1 3 3 5

-5 -3 -1

Es evidente que los puntos con estas coordenadas se encuentran en una recta por lo que trazamos la siguiente gr´fica: a
T ¢ ¢

' ¢ ¢

¢

¢

¢

¢ • (1, 1) E

¢

¢ • (2, 3)

¢

• (3, 5) ¢

¢

¢ ¢

¢

¢

¢ • (−2, −5)

¢

¢ • (−1, −3)

¢

• (0, −1) ¢...
tracking img