Historia del calculo

Solo disponible en BuenasTareas
  • Páginas : 3 (741 palabras )
  • Descarga(s) : 4
  • Publicado : 21 de enero de 2010
Leer documento completo
Vista previa del texto
3. Cálculo infinitesimal: breve reseña [editar]

El cálculo infinitesimal, llamado por brevedad "cálculo", tiene su origen en la antigua geometría griega. Demócrito calculó el volumen de pirámides yconos considerándolos formados por un número infinito de secciones de grosor infinitesimal (infinitamente pequeño). Eudoxo y Arquímedes utilizaron el "método de agotamiento" o exhaución para encontrarel área de un círculo con la exactitud finita requerida mediante el uso de polígonos regulares inscritos de cada vez mayor número de lados. En el periodo tardío de Grecia, el neoplatónico Pappus deAlejandría hizo contribuciones sobresalientes en este ámbito. Sin embargo, las dificultades para trabajar con números irracionales y las paradojas de Zenón de Elea impidieron formular una teoríasistemática del cálculo en el periodo antiguo.

En el siglo XVII, Cavalieri y Torricelli ampliaron el uso de los infinitesimales, Descartes y Fermat utilizaron el álgebra para encontrar el área y lastangentes (integración y Derivación en términos modernos). Fermat y Barrow tenían la certeza de que ambos cálculos estaban relacionados, aunque fueron Newton (hacia 1660), en Inglaterra y Leibniz en Alemania(hacia 1670) quienes demostraron que los problemas del área y la tangente son inversos, lo que se conoce como teorema fundamental del cálculo.

El descubrimiento de Newton, a partir de su teoría dela gravitación universal, fue anterior al de Leibniz, pero el retraso en su publicación aún provoca controversias sobre quién de los dos fue el primero. Newton utilizó el cálculo en mecánica en elmarco de su tratado "Principios matemáticos de filosofía natural", obra científica por excelencia, llamando a su método de "fluxiones". Leibniz utilizó el cálculo en el problema de la tangente a una curvaen un punto, como límite de aproximaciones sucesivas, dando un carácter más filosófico a su discurso. Sin embargo, terminó por adoptarse la notación de Leibniz por su versatilidad.

En el siglo...
tracking img