Otros

Solo disponible en BuenasTareas
  • Páginas : 32 (7790 palabras )
  • Descarga(s) : 0
  • Publicado : 15 de diciembre de 2010
Leer documento completo
Vista previa del texto
El Método Gráfico
El método gráfico se utiliza para la solución de problemas de PL (programación lineal), representando geométricamente a las restricciones, condiciones técnicas y el objetivo.
El modelo se puede resolver en forma gráfica si sólo tiene dos variables. Para modelos con tres o más variables, el método gráfico es impráctico o imposible.
Cuando los ejes son relacionados con lasvariables del problema, el método es llamado método gráfico en actividad. Cuando se relacionan las restricciones tecnológicas se denomina método gráfico en recursos.
Cada una de las ecuaciones que forman un sistema lineal de dos ecuaciones con dos incógnitas es la de una función de primer grado, es decir, una recta. El método gráfico para resolver este tipo de sistemas consiste, por tanto, enrepresentar en unos ejes cartesianos, o sistema de coordenadas, ambas rectas y comprobar si se cortan y, si es así, dónde. Esta última afirmación contiene la filosofía del proceso de discusión de un sistema por el método gráfico. Hay que tener en cuenta, que, en el plano, dos rectas sólo pueden tener tres posiciones relativas (entre sí): se cortan en un punto, son paralelas o son coincidentes (la mismarecta). Si las dos rectas se cortan en un punto, las coordenadas de éste son el par (x, y) que conforman la única solución del sistema, ya que son los únicos valores de ambas incógnitas que satisfacen las dos ecuaciones del sistema, por lo tanto, el mismo es compatible determinado. Si las dos rectas son paralelas, no tienen ningún punto en común, por lo que no hay ningún par de números querepresenten a un punto que esté en ambas rectas, es decir, que satisfaga las dos ecuaciones del sistema a la vez, por lo que éste será incompatible, o sea sin solución. Por último, si ambas rectas son coincidentes, hay infinitos puntos que pertenecen a ambas, lo cual nos indica que hay infinitas soluciones del sistema (todos los puntos de las rectas), luego éste será compatible indeterminado.
El procesode resolución de un sistema de ecuaciones mediante el método gráfico se resume en las siguientes fases:
i. Se despeja la incógnita “y” en ambas ecuaciones.
ii. Se construye, para cada una de las dos funciones de primer grado obtenidas, la tabla de valores correspondientes.
iii. Se representan gráficamente ambas rectas en los ejes coordenados.
iv. En este último paso hay tresposibilidades:
a. Si ambas rectas se cortan, las coordenadas del punto de corte son los únicos valores de las incógnitas x e y. Sistema compatible determinado.
b. Si ambas rectas son coincidentes, el sistema tiene infinitas soluciones que son las respectivas coordenadas de todos los puntos de esa recta en la que coinciden ambas. Sistema compatible indeterminado.
c. Si ambas rectasson paralelas, el sistema no tiene solución. Sistema incompatible.
Veamos el ejemplo visto en los métodos analíticos para resolverlo gráficamente y comprobar que tiene, se use el método que se use, la misma solución. Según el siguiente enunciado:
Entre Ana y Sergio tienen 600 euros, pero Sergio tiene el doble de euros que Ana. ¿Cuánto dinero tiene cada uno?
Llamemos x al número de euros de Anae y al de Sergio. Vamos a expresar las condiciones del problema mediante ecuaciones: Si los dos tienen 600 euros, esto nos proporciona la ecuación x + y = 600. Si Sergio tiene el doble de euros que Ana, tendremos que y = 2x. Ambas ecuaciones juntas forman el siguiente sistema:

x + y = 600
2x - y = 0
Para resolver el sistema por el métodográfico despejamos la incógnita y en ambas ecuaciones y tendremos:

y = -x + 600
y = 2x
Vamos ahora, para poder representar ambas rectas, a calcular sus tablas de valores:
y = -x + 600 | y = 2x |
x | y | x | y |
200 | 400 | 100 | 200 |
600 | 0 | 200 | 400 |
Con estas tablas de valores para las dos rectas y eligiendo las escalas...
tracking img