Teoria de grafos

Solo disponible en BuenasTareas
  • Páginas : 17 (4219 palabras )
  • Descarga(s) : 0
  • Publicado : 5 de mayo de 2011
Leer documento completo
Vista previa del texto
INTRODUCCIÒN

Este trabajo de investigación se encontraran las formas básicas para la representación del teorema de grafos que es el tema principal de esta unidad (3) nace como respuesta a la necesidad de contar con conocimientos concretos para analizar el problema y como poder resolverlos. Esta recopilación de información procedentes de diversas fuentes y lecturas, nos ayudaran a la mejorcomprensión de dicha unidad.

TEORIA DE GRAFOS
En matemáticas y en ciencias de la computación, la teoría de grafos (también llamada teoría de las gráficas) estudia las propiedades de los grafos (también llamadas gráficas). Un grafo es un conjunto, no vacío, de objetos llamados vértices (o nodos) y una selección de pares de vértices, llamados aristas (edges en inglés) que pueden ser orientados ono. Típicamente, un grafo se representa mediante una serie de puntos (los vértices) conectados por líneas (las aristas)
Existen diferentes formas de almacenar grafos en una computadora. La estructura de datos usada depende de las características del grafo y el algoritmo usado para manipularlo. Entre las estructuras más sencillas y usadas se encuentran las listas y las matrices, aunquefrecuentemente se usa una combinación de ambas. Las listas son preferidas en grafos dispersos porque tienen un eficiente uso de la memoria. Por otro lado, las matrices proveen acceso rápido, pero pueden consumir grandes cantidades de memoria.

ESTRUCTURA DE LISTA
Lista de incidencia - Las aristas son representadas con un vector de pares (ordenados, si el grafo es dirigido), donde cada par representa una delas aristas.
Lista de adyacencia - Cada vértice tiene una lista de vértices los cuales son adyacentes a él. Esto causa redundancia en un grafo no dirigido (ya que A existe en la lista de adyacencia de B y viceversa), pero las búsquedas son más rápidas, al costo de almacenamiento extra.
En esta estructura de datos la idea es asociar a cada vértice i del grafo una lista que contenga todos aquellosvértices j que sean adyacentes a él. De esta forma sólo reservará memoria para los arcos adyacentes a i y no para todos los posibles arcos que pudieran tener como origen i. El grafo, por tanto, se representa por medio de un vector de n componentes (si |V|=n) donde cada componente va a ser una lista de adyacencia correspondiente a cada uno de los vértices del grafo. Cada elemento de la listaconsta de un campo indicando el vértice adyacente. En caso de que el grafo sea etiquetado, habrá que añadir un segundo campo para mostrar el valor de la etiqueta.
Ejemplo de lista de adyacencia
ESTRUCTURAS MATRICIALES
Matriz de incidencia - El grafo está representado por una matriz de A (aristas) por V (vértices), donde [arista, vértice] contiene la información de la arista (1 - conectado, 0 - noconectado)
Matriz de adyacencia - El grafo está representado por una matriz cuadrada M de tamaño n2, donde n es el número de vértices. Si hay una arista entre un vértice x y un vértice y, entonces el elemento mx,y es 1, de lo contrario, es 0.
DEFINICIONES
Vértice
Los vértices constituyen uno de los dos elementos que forman un grafo. Como ocurre con el resto de las ramas de las matemáticas, ala Teoría de Grafos no le interesa saber qué son los vértices.
Diferentes situaciones en las que pueden identificarse objetos y relaciones que satisfagan la definición de grafo pueden verse como grafos y así aplicar la Teoría de Grafos en ellos.
Grafo

En la figura, V = { a, b, c, d, e, f }, y A = { ab, ac, ae, bc, bd, df, ef }.
Un grafo es una pareja de conjuntos G = (V,A), donde V es elconjunto de vértices, y A es el conjunto de aristas, este último es un conjunto de pares de la forma (u,v) tal que , tal que . Para simplificar, notaremos la arista (a,b) como ab.
En teoría de grafos, sólo queda lo esencial del dibujo: la forma de las aristas no son relevantes, sólo importa a qué vértices están unidas. La posición de los vértices tampoco importa, y se puede variar para obtener un...
tracking img