Algebra de boole

Páginas: 2 (319 palabras) Publicado: 26 de enero de 2010
Álgebra de Boole (también llamada Retículas booleanas) es una estructura algebraica que rigorizan las operaciones lógicas Y, O y NO, así como el conjunto de operaciones unión, intersección ycomplemento.
Se denomina así en honor a George Boole, matemático inglés que fue el primero en definirla como parte de un sistema lógico a mediados del siglo XIX. El álgebra de Boole fue un intento deutilizar las técnicas algebraicas para tratar expresiones de la lógica proposicional. En la actualidad, el álgebra de Boole se aplica de forma generalizada en el ámbito del diseño electrónico. ClaudeShannon fue el primero en aplicarla en el diseño de circuitos de conmutación eléctrica biestables, en 1938.
El Álgebra de Boole es una estructura algebraica que puede ser considerada desde distintospuntos de vista matemáticos:
Como retículo
El álgebra de Boole es un retículo (A, , +), donde el conjunto A esta formado por dos elementos A={0, 1}, como retículo presenta las siguientes propiedades, lasleyes principales son estas:
1. Ley de Idempotencia:

2. Ley de Asociatividad:

3. Ley de Conmutatividad:

4. Ley de Cancelativo

Como anillo
El Álgebra de Boole tiene Estructura algebraica deAnillo:
Grupo abeliano respecto a (+)
El conjunto A={0,1} es un Grupo abeliano respecto a (+):
1. (+) es una operación interna en A:

2. Es asociativa:

3. Tiene elemento neutro

4. Tiene elementosimétrico:

5. es conmutativa:

Grupo abeliano respecto a (·)
El conjunto A={0,1} es un Grupo abeliano respecto a ():
6. () es una operación interna en A:

7. Es asociativa:

8. Tiene elemento neutro

9.Tiene elemento simétrico:

10. es conmutativa:

[editar] Distributivo
El conjunto A={0,1} es un Grupo abeliano respecto a (+) y () y es distributiva:
11. La operación (+) es distributiva respecto a ():12. La operación () es distributiva respecto a (+):

Como resultado podemos decir que el Álgebra de Boole tiene Estructura algebraica de anillo conmutativo y con elemento neutro respecto a las dos...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Algebra de boole
  • Álgebra de Boole
  • Algebra de boole
  • Algebra de Boole
  • Álgebra de boole
  • Algebra de boole
  • Algebra de boole
  • Algebra de boole

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS