algebra lineal

Páginas: 5 (1130 palabras) Publicado: 3 de junio de 2013
Álgebra Lineal
jueves, 31 de mayo de 2012
5.2 Núcleo e imagen de una transformación lineal.

En esta sección se desarrollan algunas propiedades  básicas de las transformaciones lineales.
Teorema 1. Sea T: V  W una transformación lineal. Entonces para todos los vectores u, v, v1, v2,….vn en V y todos los escalares

 Nota  en la parte i el 0 de la izquierda es el vector cero en v; mientrasque el cero de la derecha es el vector cero en W.
i. T(0) = T(0 + 0)= T(0) + T(0). Así 0= T(0) – T(0) = T(0) + t(0) – T(0) = T(0)
ii.T(u-v) = T[u + (-1)v] = Tu + T[(-1)v] = Tu + (-1)Tv = Tu – Tv.
iii.Esta parte se prueba por inducción (vea el apéndice 1). Para n = 2 se tiene T(α1v1 + α2v2) = T (α1v1) + T(α2v2) = α1Tv1 + α2Tv2. Así, la ecuación (1) se cumple para n = 2. Se supone que se cumplepara n = k y se prueba para n=k + 1: T(α1v1 + α2v2+ ….+ αkvk+αk+1vk-1 ) = T(α1v1 + α2v2+….+αkvk) + T(αk+1vk+1), y usando la ecuación en la parte iii para n= k, esto es igual a (α1Tv1 + α2Tv2+….αkTvk) + αk+1Tvk+1, que es lo que se quería demostrar. Esto completa la prueba.

Observación. Los incisos i) y ii) del teorema 1 son casos especiales del inciso iii). Un dato importante sobre lastransformaciones lineales es que están completamente determinadas por el efecto sobre los vectores de la base.

Teorema 2      Sea v un espacio vectorial de dimensión finita con base B= {v1,v2,….vn}. Sean w1,w2,….wn vectores en W. Suponga que T1 y T2 son dos transformaciones lineales de V en W tales que T1vi = T2vi = wi para i = 1, 2,…,n. Entonces para cualquier vector v ϵ v, T 1v = T2v; es decir T1 = T2.Como B es una base para V, existe un conjunto único de escalares α1, α2,…., αn. Tales que  v = α1v1 + α2v2 + …+ αn vn. 

Entonces, del inciso iii) del teorema 1, T1v = T1(α1 v1 + α2v2 + …+ αnvn) = α1T2v1 + α2T2v2 +… + αnTnvn= α1w1 + α2w2 +…+ αnTnvn

De manera similar T2v = T2(α1v1 + α2v2 + …+ αnvn)  = α1T2v1 + α2T2v2 +…+ αnTnvn                                            = α1w1 + α2w2 +…+αnvn

Por lo tanto, T1v =T2v.

El teorema 2 indica que si T:v W y V tiene dimensión finita, entonces sólo es necesario conocer el efecto que tiene T sobre los vectores de la base en V. Esto es, si se conoce la imagen de cada vector básico, se puede determinar la imagen de cualquier vector en V. Esto determina T por completo. Para ver esto, sean v1, v2,….vn una base en V y sea v otro vector en V.Entonces, igual que en l aprueba del teorema 2, Tv = α1Tv1 + α2Tv2 +…+ αnTvn

Así, se puede calcular Tv para cualquier vector vϵ V si se conocen Tv1,Tv2,….Tvn

Ejemplo 1 Si se conoce el efecto de una transformación lineal sobre los vectores de la base, se conoce el efecto sobre cualquier otro vector.

Sea T una transformación lineal de R3 en R2 y suponga que

Solución. Se tiene

 EntoncesSurge otra pregunta; si w1,w2,….,wn son n vectores en W, ¿existe una transformación lineal T tal que Tv1 = w1 para i = 1,2,…,n? La respuesta es sí. Como lo muestra el siguiente teorema.

Definición 1 Núcleo e imagen de una transformación lineal
Sean V y W dos espacios vectoriales y sea T:V W una transformación lineal. Entonces

i . El núcleo de T, denotado por un, está dado por
ii. Laimagen de T, denotado por Im T, esta dado por
Observacion 1. Observe que un T es no vacio porque, de acuerdo al teorema 1, T(0) = 0 de manera que 0 ϵ un T para cualquier transformación lineal T. Se tiene interés en encontrar otros vectores en V que “se transformen en 0”. De nuevo, observe que cuando escribimos T(0) = 0, el 0 de la izquierda está en V y el de la derecha en W.

Observación 2. Laimagen  de T es simplemente el conjunto de “imajenes” de los vectores en V bajo la transformación T. De hecho, si w = Tv, se dice que w es la imagen de v bajo T.

Antes de dar ejemplos de núcleos e imágenes , se demostrará un teorema de gran utilidad.

Teorema 4 Si T:V W es una transformación lineal, entonces
i.Un T es un subespacio de V.
ii.Im T es un subespacio de W.

Demostracion...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Algebra Lineal
  • Algebra Lineal
  • Algebra Lineal
  • algebra lineal
  • Algebra Lineal
  • algebra lineal
  • Algebra lineal
  • Algebra Lineal

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS