derivadas
La función derivada de una función f(a) es una función que asocia a cada número real su derivada, si existe. Se expresa por f'(a).
El proceso de encontrar la derivada de una función se denomina diferenciación, y es una de las herramientas principales en el área de las matemáticas conocida como cálculo.
Considerando la función f definida en el intervalo abierto I y un punto a fijo en I,se tiene que la derivada de la función f en el punto se define como sigue:
,
Si este límite existe, de lo contrario, , la derivada, no está definida. Esta última expresión coincide con la velocidad instantánea del movimiento continuo uniforme acelerado en cinemática.
Aunque podrían calcularse todas las derivadas empleando la definición de derivada como un límite, existen reglas bienestablecidas, conocidas como teoremas para el cálculo de derivadas, las cuales permiten calcular la derivada de muchas funciones de acuerdo a su forma sin tener que calcular forzosamente el límite. Tales reglas son consecuencia directa de la definición de derivada y de reglas previas.
También puede definirse alternativamente la derivada de una función en cualquier punto de su dominio de la siguiente manera:,
La cual representa un acercamiento de la pendiente de la secante a la pendiente de la tangente ya sea por la derecha o por la izquierda según el signo de . El aspecto de este límite está relacionado más con la velocidad instantánea del movimiento uniformemente acelerado que con la pendiente de la recta tangente a una curva.
No obstante su aparente diferencia, el cálculo de la derivada pordefinición con cualquiera de los límites anteriormente expresados, proporciona siempre el mismo resultado.
EJEMPLO
Sea la función cuadrática f(x)= x2 definida para todo x perteneciente a los reales. Se trata de calcular la derivada de esta función para todo punto x ∈ R — puesto que es continua en todos los puntos de su dominio —, mediante el límite de su cociente de diferencias de Newton. Así,APLICACIONES:
La derivada es un concepto que tiene variadas aplicaciones. Se aplica en aquellos casos donde es necesario medir la rapidez con que se produce el cambio de una magnitud o situación. Es una herramienta de cálculo fundamental en los estudios de Física, Química y Biología, o en ciencias sociales como la Economía y la Sociología. Por ejemplo, cuando se refiere a la gráfica de dosdimensiones de , se considera la derivada como la pendiente de la recta tangente del gráfico en el punto . Se puede aproximar la pendiente de esta tangente como el límite cuando la distancia entre los dos puntos que determinan una recta secante tiende a cero, es decir, se transforma la recta secante en una recta tangente. Con esta interpretación, pueden determinarse muchas propiedades geométricas delos gráficos de funciones, tales como concavidad o convexidad.
Algunas funciones no tienen derivada en todos o en alguno de sus puntos. Por ejemplo, una función no tiene derivada en los puntos en que se tiene una tangente vertical, una discontinuidad o un punto anguloso. Afortunadamente, gran cantidad de las funciones que se consideran en las aplicaciones son continuas y su gráfica es una curvasuave, por lo que es susceptible de derivación.
Las funciones que son diferenciables (derivables si se habla en una sola variable), son aproximables linealmente.
INTERPRETACIÓN GEOMÉTRICA DE LA DERIVADA
Uno de los problemas históricos que dieron origen al cálculo infinitesimal es muy antiguo, data del gran científico griego Arquímedes (287 – 212 a.C.) es el llamado: problema de lastangentes y que se describe a continuación.
Dada una curva cuya ecuación referida al plano cartesiano viene dada por y = f (x) (fig. 9.5.).
fig. 9.5.
Sea P un punto fijo de la curva y sea Q un punto móvil de la curva y próximo a P.
La recta que pasa por P y Q se denomina: recta secante.
Cuando el punto Q se mueve hacia P sobre la curva, adoptando las posiciones sucesivas: Q1, Q2, Q3,...
Regístrate para leer el documento completo.