DESIGUALDADES

Páginas: 6 (1296 palabras) Publicado: 9 de julio de 2014
En matemáticas, una desigualdad es una relación que se da entre dos valores cuando estos son distintos (en caso de ser iguales, lo que se tiene es una igualdad).
Si los valores en cuestión son elementos de un conjunto ordenado, como los enteros o los reales, entonces pueden ser comparados.
La notación a < b significa a es menor que b;
La notación a > b significa a es mayor que b;
estasrelaciones se conocen como desigualdades estrictas, puesto que a no puede ser igual a b; también puede leerse como "estrictamente menor que" o "estrictamente mayor que".
La notación a ≤ b significa a es menor o igual que b;
La notación a ≥ b significa a es mayor o igual que b;
estos tipos de desigualdades reciben el nombre de desigualdades amplias (o no estrictas).
La notación a ≪ b significa a esmucho menor que b;
La notación a ≫ b significa a es mucho mayor que b;
esta relación indica por lo general una diferencia de varios órdenes de magnitud.
La notación a ≠ b significa que a no es igual a b. Tal expresión no indica si uno es mayor que el otro, o siquiera si son comparables.
Propiedades
Las desigualdades están gobernadas por las siguientes propiedades. Notar que, para laspropiedades transitividad, adición, sustracción, multiplicación y división, la propiedad también se mantiene si los símbolos de desigualdad estricta (< y >) son reemplazados por sus correspondientes símbolos de desigualdad no estricta (≤ y ≥).
Transitividad
Para números reales arbitrarios a,b y c:
Si a > b y b > c entonces a > c.
Si a < b y b < c entonces a < c.
Si a > b y b = c entonces a > c.
Si a< b y b = c entonces a < c.
Adición y sustracción
Para números reales arbitrarios a,b y c:
Si a < b entonces a + c < b + c y a − c < b − c.
Si a > b entonces a + c > b + c y a − c > b − c.
Multiplicación y división
Para números reales arbitrarios a y b, y c diferente de cero:
Si c es positivo y a < b entonces ac < bc y a/c < b/c.
Si c es negativo y a < b entonces ac > bc y a/c > b/c.Opuesto
Para números reales arbitrarios a y b:
Si a < b entonces −a > −b.
Si a > b entonces −a < −b.
Recíproco
Para números reales a y b distintos de cero, ambos positivos o negativos a la vez:
Si a < b entonces 1/a > 1/b.
Si a > b entonces 1/a < 1/b.
Si a y b son de distinto signo:
Si a < b entonces 1/a < 1/b.
Si a > b entonces 1/a > 1/b.
Función monótona
Al aplicar una función monótonacreciente a ambos lados, la desigualdad se mantiene. Si se aplica una función monótona decreciente, la desigualdad se invierte.
Ejemplo

al aplicar la función exponencial a ambos miembros de la desigualdad, esta se mantiene.
Valor absoluto
Se puede definir el valor absoluto por medio de desigualdades:


Cuerpo ordenado
Si (F, +, ×) es un cuerpo y ≤ es un orden total sobre F, entonces (F,+, ×, ≤) es un cuerpo ordenado si y solo si:
a ≤ b implica a + c ≤ b + c;
0 ≤ a y 0 ≤ b implica 0 ≤ a × b.
Los cuerpos (Q, +, ×, ≤) y (R, +, ×, ≤) son ejemplos comunes de cuerpo ordenado, pero ≤ no puede definirse en los complejos para hacer de (C, +, ×, ≤) un cuerpo ordenado.
Las desigualdades en sentido amplio ≤ y ≥ sobre los números reales son relaciones de orden total, mientras que lasdesigualdades estrictas < y > sobre los números reales son relaciones de orden estricto.
Notación encadenada
La notación a < b < c establece que a < b (a menor que b) y que b < c (b menor que c) y aplicando la propiedad transitiva anteriormente citada, puede deducirse que a < c (a menor que c). Obviamente, aplicando las leyes anteriores, puede sumarse o restarse el mismo número real a los trestérminos, así como multiplicarlos o dividirlos todos por el mismo número (distinto de cero) invirtiendo las inecuaciones según su signo. Así, a < b + e < c es equivalente a a - e < b < c - e.
Esta notación se puede extender a cualquier número de términos: por ejemplo, a1 ≤ a2 ≤ ... ≤ an establece que ai ≤ ai+1 para i = 1, 2, ..., n−1. Según la propiedad transitiva, esta condición es equivalente a...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Cuales son las desigualdades
  • Desigualdades
  • Desigualdades
  • desigualdades
  • Desigualdades
  • Desigualdades
  • Desigualdades
  • Desigualdades

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS