DESIGUALDADES
Si los valores en cuestión son elementos de un conjunto ordenado, como los enteros o los reales, entonces pueden ser comparados.
La notación a < b significa a es menor que b;
La notación a > b significa a es mayor que b;
estasrelaciones se conocen como desigualdades estrictas, puesto que a no puede ser igual a b; también puede leerse como "estrictamente menor que" o "estrictamente mayor que".
La notación a ≤ b significa a es menor o igual que b;
La notación a ≥ b significa a es mayor o igual que b;
estos tipos de desigualdades reciben el nombre de desigualdades amplias (o no estrictas).
La notación a ≪ b significa a esmucho menor que b;
La notación a ≫ b significa a es mucho mayor que b;
esta relación indica por lo general una diferencia de varios órdenes de magnitud.
La notación a ≠ b significa que a no es igual a b. Tal expresión no indica si uno es mayor que el otro, o siquiera si son comparables.
Propiedades
Las desigualdades están gobernadas por las siguientes propiedades. Notar que, para laspropiedades transitividad, adición, sustracción, multiplicación y división, la propiedad también se mantiene si los símbolos de desigualdad estricta (< y >) son reemplazados por sus correspondientes símbolos de desigualdad no estricta (≤ y ≥).
Transitividad
Para números reales arbitrarios a,b y c:
Si a > b y b > c entonces a > c.
Si a < b y b < c entonces a < c.
Si a > b y b = c entonces a > c.
Si a< b y b = c entonces a < c.
Adición y sustracción
Para números reales arbitrarios a,b y c:
Si a < b entonces a + c < b + c y a − c < b − c.
Si a > b entonces a + c > b + c y a − c > b − c.
Multiplicación y división
Para números reales arbitrarios a y b, y c diferente de cero:
Si c es positivo y a < b entonces ac < bc y a/c < b/c.
Si c es negativo y a < b entonces ac > bc y a/c > b/c.Opuesto
Para números reales arbitrarios a y b:
Si a < b entonces −a > −b.
Si a > b entonces −a < −b.
Recíproco
Para números reales a y b distintos de cero, ambos positivos o negativos a la vez:
Si a < b entonces 1/a > 1/b.
Si a > b entonces 1/a < 1/b.
Si a y b son de distinto signo:
Si a < b entonces 1/a < 1/b.
Si a > b entonces 1/a > 1/b.
Función monótona
Al aplicar una función monótonacreciente a ambos lados, la desigualdad se mantiene. Si se aplica una función monótona decreciente, la desigualdad se invierte.
Ejemplo
al aplicar la función exponencial a ambos miembros de la desigualdad, esta se mantiene.
Valor absoluto
Se puede definir el valor absoluto por medio de desigualdades:
Cuerpo ordenado
Si (F, +, ×) es un cuerpo y ≤ es un orden total sobre F, entonces (F,+, ×, ≤) es un cuerpo ordenado si y solo si:
a ≤ b implica a + c ≤ b + c;
0 ≤ a y 0 ≤ b implica 0 ≤ a × b.
Los cuerpos (Q, +, ×, ≤) y (R, +, ×, ≤) son ejemplos comunes de cuerpo ordenado, pero ≤ no puede definirse en los complejos para hacer de (C, +, ×, ≤) un cuerpo ordenado.
Las desigualdades en sentido amplio ≤ y ≥ sobre los números reales son relaciones de orden total, mientras que lasdesigualdades estrictas < y > sobre los números reales son relaciones de orden estricto.
Notación encadenada
La notación a < b < c establece que a < b (a menor que b) y que b < c (b menor que c) y aplicando la propiedad transitiva anteriormente citada, puede deducirse que a < c (a menor que c). Obviamente, aplicando las leyes anteriores, puede sumarse o restarse el mismo número real a los trestérminos, así como multiplicarlos o dividirlos todos por el mismo número (distinto de cero) invirtiendo las inecuaciones según su signo. Así, a < b + e < c es equivalente a a - e < b < c - e.
Esta notación se puede extender a cualquier número de términos: por ejemplo, a1 ≤ a2 ≤ ... ≤ an establece que ai ≤ ai+1 para i = 1, 2, ..., n−1. Según la propiedad transitiva, esta condición es equivalente a...
Regístrate para leer el documento completo.