Dios
Dibujo20131102 pikachu Recomiendo leer la entrada en la wikipedia “Gödel’s ontological proof,”a Trébede, “La prueba matemática de Gödel de la existencia de Dios,” Rescoldos en la trébede, 30 Jun 2011, y la divertida e ingeniosa entrada de Enrique, “Pikachu existe y puedo demostrarlo,” Cuentos Cuánticos, 02 Nov 2013. Prometí mencionar a Pikachu en esta entrada y más abajo lo encontrarás.
Ante todo, te aclaro lo que no vas a encontrar en esta entrada: una explicación en detalle lademostración (la figura de abajo es la versión que aparece en la wikipedia). Lo que pretendo es justificar el tipo de demostración siguiendo la línea de la discusión de Christopher Small. Por supuesto, debes tener presente que en todas las demostraciones matemáticas de la existencia de Dios el argumento es similar. Se define un objeto matemático llamado “Dios” que cumple con una propiedad muy sencilla yse introducen una serie de reglas de razonamiento lógico (axiomas) asociados a dicha propiedad. La demostración matemática procede paso a paso hasta asegurar la existencia de este objeto en un universo en el que sean válidas dichas reglas. Nada más y nada menos. No hay ninguna relación entre el objeto matemático “Dios” y lo que tú puedas pensar que es Dios, seas creyente o ateo.Dibujo20131102 godel proof - version wikipedia La demostración ontológica de Gödel es una versión moderna del argumento ontológico para la existencia de Dios de San Anselmo de Canterbury (1033–1109), un monje benedictino que fue arzobispo de Canterbury desde 1093 hasta su muerte. Su argumento, de forma resumida, es el siguiente: “Por definición, Dios es aquello de lo cual nada mayor puede concebirse. Portanto, es imposible concebir que Dios no existe, pues de lo contrario podríamos concebir algo mayor que él, a saber, un Dios que sí exista. Así pues, es inconcebible que Dios no exista; luego existe.”
Esta demostración utiliza argumentos de lógica modal, aunque la lógica modal no se formalizó de forma rigurosa hasta principios del siglo XX. La razón por la que no se usa la lógica de predicados ya seconocía en la época de Anselmo, se puede demostrar la existencia de Dios de una forma mucho más corta (aunque menos satisfactoria): “Si no es cierto que “Dios existe implica que castigará a los buenos”, entonces Dios existe.” Esta demostración es resultado de la siguiente paradoja de la implicación lógica: Si no es cierto que P implica Q, entonces P. Recuerda que la implicación lógica “P implicaQ” significa que si P es falso, “P implica Q” es verdadero, y si P es verdadero, “P implica Q” es verdadero o falso según lo sea Q. La implicación lógica presenta múltiples paradojas, como que si Q es verdadero, entonces “P implica Q” es verdadero para todo P (incluso sin que haya ninguna relación entre P y Q). Estas paradojas resultan extrañas para la intuición, rayando lo absurdo. Para evitar...
Regístrate para leer el documento completo.