ensayo de calculo integral

Páginas: 21 (5184 palabras) Publicado: 6 de junio de 2013
UNIDAD:1

TEOREMA FUNDAMENTAL DEL CALCULO


Medida Aproximada de Figuras Amorfas
Calcular las áreas de una figura regular es una tarea muy fácil, por lo cual la sustitución de la longitud, anchura u otras cantidades en la fórmula produciría el resultado.
Sin embargo, la estimación del área bajo la curva de las funciones no es tan sencilla ya que existen figuras amorfas y no fórmulasdirectas para estimaresta área.
La integración puede ser utilizada fructíferamente en una situación semejante.
Existen cuatro gráficas posibles para las cuales el área necesita ser evaluada.
Estas son: 1 Cuando el área está limitada por la curva y = f(x), el eje x y las ordenadas x = a y x = b.

Notación Sumatoria
En muchas ocasiones las operaciones matemáticas requieren la adición de unaserie de números para generar la suma total de todos los números de la serie. En tal escenario se hace difícil escribir la expresión que representa este tipo de operación. El problema empeora a medida que incrementan los números en la serie. Una solución es utilizar los primeros números de la serie, luego puntos suspensivos y finalmente los últimos números de la serie, como se muestra acontinuación,

Esta expresión representa una operación que incluye lasuma de los primeros cien números naturales. En esta expresión hemos usadolos puntos suspensivos, los tres puntos en la sucesión, para simbolizar la ausencia de números en la serie.
Una solución aún mejor es hacer uso del símbolo sumatorio o sigma. Este es un tipo de técnica abreviada que ofrece una alternativa más conveniente pararepresentar la operación sumatoria. Puede ser representada de la siguiente manera,

Aquí se representa la variable o los términos en la serie. El operador sigma es un símbolo de laGrecia antigua, donde fue utilizado como letra mayúscula del alfabeto S. Una representación típica de la operación sumatoriautilizando el símbolo sumatorio se representa,



SUMA DE RIEMANN

En matemáticas, lasuma de Riemann es un método de integración numérica que nos sirve para calcular el valor de una integral definida, es decir, el área bajo una curva, este método es muy útil cuando no es posible utilizar el Teorema fundamental del cálculo. Estas sumas toman su nombre del matemático alemán Bernhard Riemann.
La suma de Riemann consiste básicamente en trazar un número finito de rectangulos dentro deun área irregular, calcular el área de cada uno de los rectangulos y sumarlos. El problema de este método de integración numérica es que al sumar las áreas se obtiene un margen de error muy grande.

DEFINICION:
Consideremos lo siguiente:

una función
donde D es un subconjunto de los números reales
I = [a, b] un intervalo cerrado contenido en D.
Un conjunto finito de puntos {x0, x1, x2,... xn} tales que a = x0 < x1 < x2 ... < xn = b
crean una partición de I
P = {[x0, x1), [x1, x2), ... [xn-1, xn]}
Si P es una partición con n elementos de I, entonces la suma de Riemann de f sobre I con la partición P se define como

donde xi-1 ≤ yi ≤ xi. La elección de yi en este intervalo es arbitraria.
Si yi = xi-1 para todo i, entonces denominamos S como la suma de Riemann por laizquierda.
Si yi = xi, entonces denominamos S como la suma de Riemann por la derecha.
Promediando las sumas izquierda y derecha de Riemann obtenemos la llamada suma trapezoidal



DEFINICION DE INTEGRAL DEFINIDA

La integración es un concepto fundamental del cálculo y del análisis matemático. Básicamente, una integral es una generalización de la suma de infinitos sumandos, infinitamente pequeños.El cálculo integral, encuadrado en el cálculo infinitesimal, es una rama de las matemáticas en el proceso de integración o antiderivación, es muy común en la ingeniería y en la ciencia también; se utiliza principalmente para el cálculo de áreas y volúmenes de regiones y sólidos de revolución.
Fue usado por primera vez por científicos como Arquímedes, René Descartes, Isaac Newton, Gottfried...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • ensayo calculo integrales
  • Ensayo De Calculo Integral T 0
  • Calculo Integral
  • Calculo Integral
  • Calculo Integral Ese
  • Calculo integral
  • Calculo integral
  • Calculo integral

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS