Funciones & relaciones
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CORPORACIÓN UNIVERSITARIA REGIONAL DEL CARIBE IAFIC
MATEMATICAS I
PROGRAMA DE CONTABILIDAD Y FINANZAS
SINCELEJO
2011
RELACIONES Y FUNCIONES
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Trabajo de matemáticas como requisito para fortalecer el conocimiento sobre el tema de funciones y relaciones
DOCENTE
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
CORPORACIÓN UNIVERSITARIA REGIONAL DEL CARIBE IAFIC
MATEMATICAS I
PROGRAMA DE CONTABILIDAD Y FINANZAS
SINCELEJO
2011
CONTENIDOPág.
.
1. INTRODUCCIÓN
2. OBJETIVOS
2.1 OBJETIVO GENERAL
2.2 OBJETIVOS ESPECIFICOS
3. CONCEPTOS TEORICOS
3.1 PLANO CARTESIANO
3.2 PRODUCTO CARTESIANO
3.3 RELACIÓN
3.3.1 DOMINIO Y RANGO
3.4 FUNCIÓN
3.4.1 CLASES DE FUNCIONES
CONCLUSIONES
BIBLIOGRAFÍA
1. INTRODUCCION
En el presente trabajo, se detallarán las diferentes funciones y relaciones en lasmatemáticas y sus aplicaciones sobre las distintas ciencias y la vida cotidiana.
El desarrollo del conocimiento lógico-matemático se introduce dentro del área de Comunicación y Representación. el origen del pensamiento lógico-matemático hay que situarlo en la actuación del ser humano sobre los objetos y en las relaciones que a través de su actividad establece entre ellos.
El objetivo deeste trabajo es poder entender el uso de las funciones y relaciones para así poder utilizarlas frente a los problemas diarios. El método de investigación utilizado es la consulta bibliográfica y el análisis de la misma.
2. OBJETIVOS
2.1 OBJTIVO GENERAL
Representar y analizar situaciones matemáticas y estructuras, mediante símbolos algebraicos.
2.2 OBJETIVOS ESPECIFICOS•Desarrollar una comprensión conceptual sobre diferentes usos de variables.
•Explorar relaciones entre expresiones simbólicas y gráficos de rectas, prestando particular atención a los significados de intercepto y pendiente. Usando el álgebra simbólica para representar situaciones y para resolver problemas, en especial los que involucran relaciones lineales.
•Reconocer y generar formas equivalentesde expresiones algebraicas sencillas y resolver ecuaciones lineales.
3. CONCEPTOS TEORICOS
Bertrand Russell
Trelleack, 1872-Penrhydeudraeth, 1970. Filósofo, matemático y escritor inglés. Estudia en la Universidad de Cambridge, donde años más tarde enseña matemáticas, lógica formal y filosofía. Sus ideales políticos pacifistas durante la Primera Guerra Mundial le ocasionan elencarcelamiento y la destitución en Cambridge. En la primera etapa de su trabajo se inclina a considerar las matemáticas como el ideal del razonamiento filosófico. Polemiza con las escuelas alemanas y francesas intuicionistas y formalistas; sus tesis pretenden demostrar que las matemáticas puras tratan de conceptos posibles de definir por medio de un pequeño número de enunciados lógicos fundamentales y quetodas las proposiciones matemáticas se deducen de un pequeño número de principios lógicos esenciales. Reduce las matemáticas a la lógica, creando así el logicalismo.
3.1. PLANO CARTESIANO
Es el espacio constituido por todos los puntos limitados por dos ejes de coordenadas (x, y).
En un plano cartesiano, localizar el punto (3, 4)
x=3, y=4
Para localizar un punto en el planocartesiano, debemos hacerlo nombrando las coordenadas con respecto a los ejes x, y. Nombraremos siempre la coordenada sobre el eje x (primera componente) y luego la coordenada sobre el eje y (segunda componente). Así el punto A de la figura está localizado en las coordenadas (3, 4) o que significa que le puede ubicar 3 cm a la derecha del origen sobre el eje x, y 4 cm hacia arriba paralelo al...
Regístrate para leer el documento completo.