influencia de presion

Páginas: 7 (1592 palabras) Publicado: 2 de febrero de 2015
(q_(x+∆x)∙∆x)/k=∆T⋯⋯⋯∙∙∙∙∙∙∙∙∙(7)
Ta Tiempo
(min) Nodo T1 Nodo T2 Nodo T3 Nodo T4 Nodo T5 Nodo T6 Nodo T7 Nodo T8
22.2 O 294.15 293.27 292.97 293.07 293.17 292.97 292.97 292.78
22.2 5 296.59 295.12 294.24 293.95 293.76 293.36 293.36 293.17
22.2 10 297.86 296.2 295.12 294.63 294.34 293.95 293.85 293.56
22.2 15 298.54 296.88 295.71 295.22 294.83 294.44 294.34 293.95
22.2 20 299.13 297.37296.2 295.31 295.22 294.83 294.63 294.24
22.2 25 299.81 297.76 296.49 295.9 295.51 295.03 294.83 294.54
22.2 30 299.81 297.95 296.69 296.1 295.71 295.22 295.03 294.73
Tabla de datos experimentales (4 volts) Temperatura baja



Cálculos:
Balance de calor 0- 30min:
Encontrado el régimen permanente se toman en cuenta las temperaturas en cada nodo (EC.3)
CALOR INICIAL – CALOR POR CONDUCCION –CALOR PERDIDO =0
Qinicial –Qx –Qperdido=0

La Q inicial se calcula con la fuente.
Qinicial= V*I=watts.
V=4.1 volts
I= 0.2 A
QInicial= (4.1volts)(0.2 A)= 0.82watts.

Qx se calcula con la ecuación de Fourier.
Qx= At k (Tf – Ti/ Xf- Xi)

At= ((〖∙D〗^2))/4= ((〖∙0.01m〗^2))/4= 7.85x10-5 m2
k= 372.1 Watt/m*K.

0 min

Q1-2= (7.85x10-5 m2)(372.1 Watt/mK)[(294.15-293.27)K/(0.05m-0)=0.514093 watts
Q2-3= (7.85x10-5 m2)(372.1 Watt/mK)[(293.27-292.97)K/(0.05m)= 0.175259 watts
Q3-4= (7.85x10-5 m2)(372.1 Watt/mK)[(292.97-293.07)K/(0.05m)= -0.0584197 watts
Q4-5= (7.85x10-5 m2)(372.1 Watt/mK)[( 293.07-293.17)K/(0.05m)= -0.0584197 watts
Q5-6= (7.85x10-5 m2)(372.1 Watt/mK)[( 293.17-292.97)K/(0.05m)= 0.116839 watts
Q6-7= (7.85x10-5 m2)(372.1 Watt/mK)[292.97-292.97)K/(0.05m)= 0 wattsQ7-8= (7.85x10-5 m2)(372.1 Watt/mK)[(292.97-292.78)K/(0.05m)= 0.1109974 watts

5 min.

Q1-2= (7.85x10-5 m2)(372.1 Watt/mK)[(296.59-295.12)K/(0.05m-0)= 0.858769 watts
Q2-3= (7.85x10-5 m2)(372.1 Watt/mK)[(295.12-294.24)K/(0.1m- 0.05m)= 0.5140933 watts
Q3-4= (7.85x10-5 m2)(372.1 Watt/mK)[(294.24 – 293.95)K/(0.05m)= 0.1694171 watts
Q4-5= (7.85x10-5 m2)(372.1 Watt/mK)[(293.95-293.76)K/( 0.05m)=0.1109974 watts
Q5-6= (7.85x10-5 m2)(372.1 Watt/mK)[293.76-293.36)K/(0.05m)= 0.2336788 watts
Q6-7= (7.85x10-5 m2)(372.1 Watt/mK)[(293.36-293.36)K/(0.05m)= 0 watts
Q7-8= (7.85x10-5 m2)(372.1 Watt/mK)[(293.36-293.17)K/(0.05m)= 0.1109974 watts

10 min.

Q1-2= (7.85x10-5 m2)(372.1 Watt/mK)[(297.86-296.2)K/(0.05m-0)= 0.969767 watts
Q2-3= (7.85x10-5 m2)(372.1 Watt/mK)[(296.2-295.12)K/(0.1m-0.05m)= 0.630932 watts
Q3-4= (7.85x10-5 m2)(372.1 Watt/mK)[(295.12-294.63)K/(0.05m)= 0.286256 watts
Q4-5= (7.85x10-5 m2)(372.1 Watt/mK)[(294.63-294.34)K/( 0.05m)= 0.169417 watts
Q5-6= (7.85x10-5 m2)(372.1 Watt/mK)[294.34-293.95)K/(0.05m)= 0.227836 watts
Q6-7= (7.85x10-5 m2)(372.1 Watt/mK)[(293.95-293.85)K/(0.05m)= 0.058419 watts
Q7-8= (7.85x10-5 m2)(372.1 Watt/mK)[(293.85-293.56)K/(0.05m)= 0.169417watts




15 min

Q1-2= (7.85x10-5 m2)(372.1 Watt/mK)[(298.54-296.88)K/(0.05m-0)= 0.969767 watts
Q2-3= (7.85x10-5 m2)(372.1 Watt/mK)[(296.88-295.71)K/(0.1m- 0.05m)= 0.683510 watts
Q3-4= (7.85x10-5 m2)(372.1 Watt/mK)[(295.71-295.22)K/(0.05m)= 0.286256 watts
Q4-5= (7.85x10-5 m2)(372.1 Watt/mK)[(295.22-294.83)K/( 0.05m)= 0.227836 watts
Q5-6= (7.85x10-5 m2)(372.1Watt/mK)[294.83-294.44)K/(0.05m)= 0.227836 watts
Q6-7= (7.85x10-5 m2)(372.1 Watt/mK)[(294.44-294.34)K/(0.05m)= 0.0584197 watts
Q7-8= (7.85x10-5 m2)(372.1 Watt/mK)[(294.34-293.95)K/(0.05m)= 0.227836 watts


Calculo del coeficiente de transferencia de calor (h) de perdido.

Qperdido=h As (Tx-Ta)
h= 23w/m2K
As=(0.05m)(0.01m)=0.00157m2

0 min
Qperdido1-2=(23w/m2K)( 0.00157m2)(293.71-295.35)K= 0.05922 watts.Qperdido2-3=(23w/m2K)( 0.00157m2)(293.12-295.35)K= 0.08052 watts.
Qperdido3-4=(23w/m2K)( 0.00157m2)(293.02-295.35)K= 0.08413 watts.
Qperdido4-5=(23w/m2K)( 0.00157m2)(293.12-295.35)K= 0.08052 watts.
Qperdido5-6=(23w/m2K)( 0.00157m2)(293.07-295.35)K= 0.08233 watts.
Qperdido6-7=(23w/m2K)( 0.00157m2)(292.97-295.35)K= 0.085941 watts.
Qperdido7-8=(23w/m2K)( 0.00157m2)(292.875-295.35)K =0.08937 watts....
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Solubilidad Influencia De Temperatura Y Presion
  • Influencia De La Presión Sobre El Punto De Ebullision
  • Influencia De La Presion Sobre La Temperatura De Ebullicion
  • INFLUENCIA DE LA TEMPERATURA EN LA PRESION DE VAPOR DE UN LIQUIDO
  • Influencia De La Presion
  • Punto de Fusión e bullicion del agua e influencia de la presion atmosferica
  • Influencia de la temperatura y la presión en la constante de equilibrio químico.
  • Influencia De La Presion Sobre El Punto De Ebullicion

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS