Matemática CINU

Páginas: 9 (2145 palabras) Publicado: 3 de febrero de 2016

REPÚBLICA BOLIVARIANA DE VENEZUELA
MINISTERIO DEL PODER POPULAR PARA LA DEFENSA
UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA
DE LA FUERZA ARMADA NACIONAL
NÚCLEO VARGAS
DIVISIÓN ACADÉMICA

ECUACIONES EN N, Z, Q


ECUACIONES EN N

Una ecuación con una incógnita es una igualdad en la cual aparece un valor desconocido, que llamamos incógnita y se verifica solo para un valordeterminado. La resolución de ecuaciones en N siempre sólo admite soluciones que sean números naturales; por ejemplo, la ecuación

X + 34 = 70


Término, miembros y grado de una ecuación

Términos de una ecuación: llamamos términos de una ecuación a cada número o letra separada por los signos + ó –

Ejemplo: X + 34 = 70------ X; 34 y 70 son los términos

Miembros de una ecuación: llamamos miembros de una ecuación a las expresiones que se encuentran a cada lado del signo igual

Ejemplo: X + 34 = 70

X + 34 PRIMER MIEMBRO Y 70 SEGUNDO MIEMBRO





Resolución deEcuaciones

Resolución de ecuaciones de primer grado. Las ecuaciones polinómicas de primer grado se resuelven en tres pasos: transposición, simplificación y despeje, desarrollados a continuación mediante un ejemplo.

Dada la ecuación:

14X -5 + 108X – 6X – 92 = 16X + 18 + 385

Transposición: Primero se agrupan todos los monomios que incluyen la incógnita x en uno de los miembros de la ecuación,normalmente en el izquierdo; y todos los términos independientes (los que no tienen x o la incógnita del problema) en el otro miembro. Esto puede hacerse teniendo en cuenta que:

Si se suma o se resta un mismo monomio en los dos miembros, la igualdad no varía.

En términos coloquiales, se dice que: si un término está sumando (como 16x en el miembro de la derecha) pasa al otro lado restando (−16x ala izquierda); y si está restando (como el −5 de la izquierda), pasa al otro lado sumando (+5 a la derecha)

La ecuación quedará entonces así:

14X + 108X – 6X – 16X = 18 + 385 + 92 + 5

Como puede verse, todos los términos que poseen la variable X han quedado en el primer miembro (a la izquierda del signo igual), y los que no la poseen, por ser sólo constantes numéricas, han quedado a laderecha.

Simplificación: El siguiente paso es convertir la ecuación en otra equivalente más simple y corta. Se efectúa la simplificación del primer miembro Y se simplifica el segundo miembro
La ecuación simplificada será:

(14 + 108 – 6 – 16) X = 525
( 100 )X = 500

Despeje: Ahora es cuando se llega al objetivo final: que la incógnita quedeaislada en un miembro de la igualdad. Para lo cual se recuerda que:

Si se multiplica o se divide ambos miembros por un mismo número diferente de cero, la igualdad no varía. Debemos entonces pasar el número 100 al otro miembro y, como estaba multiplicando, lo hará dividiendo, sin cambiar de signo:
( 100 )X = 500X = 500
100

El ejercicio está teóricamente resuelto, ya que tenemos una igualdad en la que X equivale al número 500/100. Sin embargo, debemos simplificar.

X = 5

Se puederesolver la fracción (numerador dividido entre denominador) el resultado es exacto, la solución es un numero Natural.



Ejemplos.

Resolver las siguientes ecuaciones en N



X – 3 = 7

X – 3 + 3 = 7 + 3 (se suma 3 en ambos miembros)

X = 10



7X= 28

7X = 28 (se divide entre 7 en los
7 7 dos...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Cinu
  • Cinu
  • cinu
  • cinu
  • Qu es el cinu
  • Lengua Cinu
  • Cinu Unefa
  • Guia Cinu

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS