Newton-raphson

Páginas: 7 (1695 palabras) Publicado: 25 de agosto de 2010
Historia
El método de Newton fue descrito por Isaac Newton en De analysi per aequationes número terminorum infinitas (escrito en 1669, publicado en 1711 por William Jones) y en De metodis fluxionum et serierum infinitarum (escrito en 1671, traducido y publicado como Método de las fluxiones en 1736 por John Colson). Sin embargo, su descripción difiere en forma sustancial de la descripción modernapresentada más arriba: Newton aplicaba el método solo a polinomios, y no consideraba las aproximaciones sucesivas xn, sino que calculaba una secuencia de polinomios para llegar a la aproximación de la raíz x. Finalmente, Newton ve el método como puramente algebraico y falla al no ver la conexión con el cálculo.

Isaac Newton probablemente derivó su método de forma similar aunque menos precisadel método de François Viète. La esencia del método de Viète puede encontrarse en el trabajo del matemático persa Sharaf al-Din al-Tusi.

[editar] Descripción del método
El método de Newton-Raphson es un método abierto, en el sentido de que su convergencia global no está garantizada. La única manera de alcanzar la convergencia es seleccionar un valor inicial lo suficientemente cercano a la raízbuscada. Así, se ha de comenzar la iteración con un valor razonablemente cercano al cero (denominado punto de arranque o valor supuesto). La relativa cercanía del punto inicial a la raíz depende mucho de la naturaleza de la propia función; si ésta presenta múltiples puntos de inflexión o pendientes grandes en el entorno de la raíz, entonces las probabilidades de que el algoritmo diverja aumentan,lo cual exige seleccionar un valor supuesto cercano a la raíz. Una vez se ha hecho esto, el método linealiza la función por la recta tangente en ese valor supuesto. La abscisa en el origen de dicha recta será, según el método, una mejor aproximación de la raíz que el valor anterior. Se realizarán sucesivas iteraciones hasta que el método haya convergido lo suficiente.

Sea f : [a, b] -> Rfunción derivable definida en el intervalo real [a, b]. Empezamos con un valor inicial x0 y definimos para cada número natural n

Donde f ' denota la derivada de f.

Nótese que el método descrito es de aplicación exclusiva para funciones de una sola variable con forma analítica o implícita cognoscible. Existen variantes del método aplicables a sistemas discretos que permiten estimar las raíces de latendencia, así como algoritmos que extienden el método de Newton a sistemas multivariables, sistemas de ecuaciones, etc.

[editar] Obtención del Algoritmo
Tres son las formas principales por las que tradicionalmente se ha obtenido el algoritmo de Newton-Raphson.

La primera de ellas es una simple interpretación geométrica. En efecto, atendiendo al desarrollo geométrico del método de lasecante, podría pensarse en que si los puntos de iteración están lo suficientemente cerca (a una distancia infinitesimal), entonces la secante se sustituye por la tangente a la curva en el punto. Así pues, si por un punto de iteración trazamos la tangente a la curva, por extensión con el método de la secante, el nuevo punto de iteración se tomará como la abscisa en el origen de la tangente (punto decorte de la tangente con el eje X). Esto es equivalente a linealizar la función, es decir, f se reemplaza por una recta tal que contiene al punto (x0, f (x0)) y cuya pendiente coincide con la derivada de la función en el punto, f'(x0). La nueva aproximación a la raíz, x1, se logra la intersección de la función lineal con el eje X de ordenadas. Matemáticamente:


Ilustración de una iteración delmétodo de Newton (la función f se demuestra en azul y la línea de la tangente está en rojo). Vemos que xn + 1 es una aproximación mejor que xn para la raíz x de la función f.En la ilustración adjunta del método de Newton se puede ver que xn + 1 es una mejor aproximación que xn para el cero (x) de la función f.

Una forma alternativa de obtener el algoritmo es desarrollando la función f (x) en...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Newton Raphson
  • Newton raphson
  • Newton-Raphson
  • Newton Raphson
  • METODOS NEWTON RAPHSON
  • Newton raphson metodos numericos
  • Metodo De Newton Raphson
  • Método De Newton Raphson

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS