numeros primos

Páginas: 25 (6086 palabras) Publicado: 15 de agosto de 2014
 Número primo
En matemáticas, un número primo es un natural mayor que 1 que tiene únicamente dos divisores distintos: él mismo y el 1. Los números primos se contraponen así a los compuestos, que son aquellos que tienen algún divisor natural aparte de sí mismos y del 1. El número 1, por convenio, no se considera ni primo ni compuesto.
Los números primos menores que cien son lossiguientes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,79, 83, 89 y 97.1
La propiedad de ser primo se denomina primalidad. A veces se habla de número primo impar para referirse a cualquier número primo mayor que 2, ya que éste es el único número primo par. A veces se denota el conjunto de todos los números primos por .
El estudio de los números primos es una parteimportante de la teoría de números, la rama de las matemáticas que comprende el estudio de los números enteros. Los números primos están presentes en algunas conjeturas centenarias tales como la hipótesis de Riemann y la conjetura de Goldbach. La distribución de los números primos es un tema recurrente de investigación en la teoría de números: si se consideran números individuales, los primosparecen estar distribuidos aleatoriamente, pero la distribución «global» de los números primos sigue leyes bien definidas.
Números primos y funciones aritméticas
Las funciones aritméticas, es decir, funciones reales o complejas, definidas sobre un conjunto de números naturales, desempeñan un papel crucial en la teoría de números. Las más importantes son las funciones multiplicativas, que son aquellasfunciones f en las cuales, para cada par de números coprimos (a,b) se tiene
.
Algunos ejemplos de funciones multiplicativas son la función φ de Euler, que a cada n asocia el número de enteros positivos menores y coprimos con n, y las funciones τ y σ, que a cada n asocian respectivamente el número de divisores de n y la suma de todos ellos. El valor de estas funciones en las potencias de númerosprimos es
,
,
.
Gracias a la propiedad que las define, las funciones aritméticas pueden calcularse fácilmente a partir del valor que toman en las potencias de números primos. De hecho, dado un número natural n de factorización

se tiene que

con lo que se ha reconducido el problema de calcular f(n) al de calcular f sobre las potencias de los números primos que dividen n, valores que songeneralmente más fáciles de obtener mediante una fórmula general. Por ejemplo, para conocer el valor de la función φ sobre n=450=2·32·52 basta con calcular
.
Características del conjunto de los números primos
Infinitud de los números primos
Véase también: Infinitud de los números primos.
Existen infinitos números primos. Euclides realizó la primera demostración alrededor del año 300 a. C. en ellibro IX de su obraElementos16 Una adaptación común de esta demostración original sigue así: Se toma un conjunto arbitrario pero finito de números primos p1, p2, p3, ···, pn, y se considera el producto de todos ellos más uno, . Este número es obviamente mayor que 1 y distinto de todos los primos pi de la lista. El número q puede ser primo o compuesto. Si es primo tendremos un número primo que noestá en el conjunto original. Si, por el contrario, es compuesto, entonces existirá algún factor p que divida a q. Suponiendo que p es alguno de los pi, se deduce entonces que p divide a la diferencia , pero ningún número primo divide a 1, es decir, se ha llegado a un absurdo por suponer que pestá en el conjunto original. La consecuencia es que el conjunto que se escogió no es exhaustivo, ya queexisten números primos que no pertenecen a él, y esto es independiente del conjunto finito que se tome.
Por tanto, el conjunto de los números primos es infinito.
Si se toma como conjunto el de los n primeros números primos, entonces , donde pn# es lo que se llama primorial de pn. Un número primo de la forma pn# +1 se denomina número primo de Euclides en honor al matemático griego. También se...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • NUMERO PRIMOS
  • numeros primos
  • numeros primos
  • Los numeros primos
  • numeros primos
  • Los números primos
  • Numeros primos
  • numeros primos

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS