Variados
Etimología
El término regresión se utilizó por primera vez en el estudio de variables antropométricas: al comparar la estatura de padres e hijos, resultó que los hijos cuyos padres tenían unaestatura muy superior al valor medio tendían a igualarse a éste, mientras que aquellos cuyos padres eran muy bajos tendían a reducir su diferencia respecto a la estatura media; es decir, "regresaban" al promedio.2 La constatación empírica de esta propiedad se vio reforzada más tarde con la justificación teórica de ese fenómeno.
El término lineal se emplea para distinguirlo del resto de técnicasde regresión, que emplean modelos basados en cualquier clase de función matemática. Los modelos lineales son una explicación simplificada de la realidad, mucho más ágil y con un soporte teórico por parte de la matemática y la estadística mucho más extenso.
Pero bien, como se ha dicho, podemos usar el término lineal para distinguir modelos basados en cualquier clase de aplicación.
El modelo deregresión lineal
El modelo lineal relaciona la variable dependiente Y con K variables explicativas X_k (k = 1,...K), o cualquier transformación de éstas, que generan un hiperplano de parámetros \beta_k desconocidos:
(2) Y = \sum \beta_k X_k + \varepsilon
donde \varepsilon es la perturbación aleatoria que recoge todos aquellos factores de la realidad no controlables u observables y quepor tanto se asocian con el azar, y es la que confiere al modelo su carácter estocástico. En el caso más sencillo, con una sola variable explicativa, el hiperplano es una recta:
(3) Y = \beta_1 + \beta_2 X_2 + \varepsilon
El problema de la regresión consiste en elegir unos valores determinados para los parámetros desconocidos \beta_k, de modo que la ecuación quede completamenteespecificada. Para ello se necesita un conjunto de observaciones. En una observación cualquiera i-ésima (i= 1,... I) se registra el comportamiento simultáneo de la variable dependiente y las variables explicativas (las perturbaciones aleatorias se suponen no observables).
(4) Y_i = \sum \beta_k X_{ki} + \varepsilon_i
Los valores escogidos como estimadores de los parámetros, \hat{\beta_k}, son loscoeficientes de regresión, sin que se pueda garantizar que coinciden con parámetros reales del proceso generador. Por tanto, en
(5) Y_i = \sum \hat{\beta_k} X_{ki} + \hat{\varepsilon_i}
Los valores \hat{\varepsilon_i} son por su parte estimaciones de la perturbación aleatoria o errores.
Hipótesis modelo de regresión lineal clásico
1. Esperanza matemática nula.
E(\varepsilon_i) =0
Para cada valor de X la perturbación tomará distintos valores de forma aleatoria, pero no tomará sistemáticamente valores positivos o negativos, sino que se supone que tomará algunos valores mayores que cero y otros menores, de tal forma que su valor esperado sea cero.
2. Homocedasticidad
Var(\varepsilon_t) = E(\varepsilon_t - E \varepsilon_t)^2 = E \varepsilon_t^2 = \sigma^2 para todot
Todos los términos de la perturbación tienen la misma varianza que es desconocida. La dispersión de cada \varepsilon_t en torno a su valor esperado es siempre la misma.
3. Incorrelación. Cov(\varepsilon_t,\varepsilon_s ) = (\varepsilon_t - E \varepsilon_t) (\varepsilon_s - E \varepsilon_s) = E \varepsilon_t \varepsilon_s = 0 para todo t,s con t distinto de s
Las covarianzas entre lasdistintas pertubaciones son nulas, lo que quiere decir que no están correlacionadas o autocorrelacionadas. Esto implica que el valor de la perturbación para cualquier observación muestral no viene influenciado por los valores de la perturbación correspondientes a otras observaciones muestrales.
4. Regresores no estocásticos.
5. No existen relaciones lineales exactas entre los regresores....
Regístrate para leer el documento completo.