Vibraciones

Páginas: 2 (396 palabras) Publicado: 1 de noviembre de 2012
1.- Un movimiento armónico simple está definido por la ecuación:
x = 4 sen (0.1t + 0.5)
Expresando las unidades en el S.I.
Determinar:
a) La amplitud (A), el período (T) y la frecuencia ( f )del movimiento.
b) La posición, velocidad y aceleración en el instante inicial (t = 0)
c) La posición, velocidad y aceleración en el instante t = 4 s

La ecuación del MAS es del tipo:
[pic]a)
* Amplitud = 4 metros
* Período =

[pic] segundos

* Frecuencia =
[pic]

b)

Para t = 0

En los apuntes:
La expresión ((t + () se conoce como fase. Y se expresa en radianes (Ojocalculadoras).


[pic][pic]
[pic]
[pic]

c)

Para t = 4 segundos

[pic]
[pic]
[pic]







2.- El bloque de 25Kg de la figura se mueve verticalmente hacia abajo desde su posiciónde equilibrio y se suelta. Determinar
a) El período (T) y la frecuencia (f) del movimiento resultante.
b) La velocidad y aceleración máximas del bloque si la amplitud (A) del movimiento es de30mm.
[pic]

La Keq será: [pic]


[pic]= [pic]

a)
El período de vibración (T) es [pic]

La frecuencia (f) es [pic]

b)

Velocidad máxima

La velocidad V será máxima cuando[pic]sea igual a -(A siendo en este caso A= 0.03 m por lo que:

Vmáx = -(12.15) x (0.03m) = -0.364m/sg

Aceleración máxima

La aceleración máxima será: amáx = -(2.A = -(12.15)2 x (0.03m) = -4.43 m/s23.- El sistema de la figura consta de un muelle de constante k = 2000 N/m un amortiguador de constante c = 400Ns/m y una masa m de 5 Kg. Si las condiciones iniciales son x0 = 10 cm y V0 = 0.Si se desprecia la fuerza de rozamiento. Determinar la ecuación x del movimiento.
[pic]
Las ecuaciones del amortiguamiento son:


Caso 1: d > ( (supercríticamente amortiguado)

[pic]

Caso 2d = ( (amortiguamiento crítico)

[pic]

Caso 3 d < ( (subcríticamente amortiguado)

[pic]

[pic][pic]; [pic]

Como d > ω se trata de un caso de amortiguamiento supercrítico por lo que...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Vibraciones
  • vibracion
  • vibraciones
  • Vibraciones
  • Vibraciones
  • Vibraciones
  • vibraciones
  • Vibraciones

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS