Analisis estructural

Solo disponible en BuenasTareas
  • Páginas : 9 (2118 palabras )
  • Descarga(s) : 0
  • Publicado : 12 de enero de 2011
Leer documento completo
Vista previa del texto
Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural

Hallar por el método de Cross los diagramas de momentos flectores y esfuerzos cortantes, así como las reacciones de todas las barras del pórtico de la figura. Calcular la expresión de la curva de momentos flectores de la barra DE y el ángulo girado en E aplicando el método de superposición. Larelación entre los momentos de inercia de las barras es: I1 = 2 ⋅ I2 = 3 ⋅ I3

2 T/m A 5T 3 D C I1 I1 I2 1 T/m E I1 F I2 I1 B

4

I3

I2

I3

1.25 T/m

G

H 2

I

1.5
(*)

4

4

1º . Determinamos los coeficientes elásticos (βi, Ki y ri).
− NUDO A K AD =
(*)

4 ⋅ E ⋅ I2 4 ⋅ E ⋅ I1 2 = = ⋅ E ⋅ I1 2⋅3 l 3

La barra IF está sometida a una carga uniforme de succión, devalor 1.25 T/m

1

Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural

K AB =

4 ⋅ E ⋅ I1 4 ⋅ E ⋅ I1 = = E ⋅ I1 l 4 1 β AB = 2 1 β AD = 2 K AD 23 rAD = = = 0 .4 K AD + K AB 2 3 + 1 K AB 1 rAB = = = 0 .6 K AD + K AB 2 3 + 1

− NUDO B K BA = 4 ⋅ E ⋅ I1 4 ⋅ E ⋅ I1 = = E ⋅ I1 l 4 4 ⋅ E ⋅ I2 4 ⋅ E ⋅ I1 2 K BE = = = ⋅ E ⋅ I1 l 2⋅3 3 1 β BA = 2 1 βBE = 2 K BA 1 rBA = = = 0 .6 K BA + K BE 1 + 2 3 K BE 23 rBE = = = 0 .4 K BA + K BE 1 + 2 3

− NUDO D 4 ⋅ E ⋅ I2 4 ⋅ E ⋅ I1 2 = = ⋅ E ⋅ I1 l 2⋅3 3 1 β DA = 2 K DC = 0 β DC = 0 4 ⋅ E ⋅ I1 4 ⋅ E ⋅ I1 K DE = = = E ⋅ I1 l 4 K DA =

2

Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural

1 2 3 ⋅ E ⋅ I3 3 ⋅ E ⋅ I1 1 K DG = = = ⋅ E ⋅ I1 l 4⋅3 4 βDG = 0 β DE = rDA = rDC K DA =0 K DA 23 = = 0.35 + K DC + K DE + K DG 2 3 + 0 + 1 + 1 4

rDE = rDG

K DE 1 = = 0.52 K DA + K DC + K DE + K DG 2 3 + 0 + 1 + 1 4 K DG 14 = = = 0.13 K DA + K DC + K DE + K DG 2 3 + 0 + 1 + 1 4

− NUDO E K ED = 4 ⋅ E ⋅ I1 4 ⋅ E ⋅ I1 = = E ⋅ I1 l 4 1 β ED = 2 1 β EB = 2 4 ⋅ E ⋅ I1 4 ⋅ E ⋅ I1 K EF = = = E ⋅ I1 l 4 1 β EF = 2 4 ⋅ E ⋅ I2 4 ⋅ E ⋅ I1 1 K EH = = = ⋅ E ⋅I1 l 2⋅4 2 1 β EH = 2 K ED 1 rED = = = 0.315 K ED + K EB + K EF + K EH 1 + 2 3 + 1 + 1 2 K EB 23 rEB = = = 0.21 K ED + K EB + K EF + K EH 1 + 2 3 + 1 + 1 2 K EF 1 rEF = = = 0.315 K ED + K EB + K EF + K EH 1 + 2 3 + 1 + 1 2 K EH 12 rEH = = = 0.16 K ED + K EB + K EF + K EH 1 + 2 3 + 1 + 1 2

3

Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural− NUDO F 4 ⋅ E ⋅ I1 4 ⋅ E ⋅ I1 = = E ⋅ I1 l 4 1 β FE = 2 3 ⋅ E ⋅ I3 3 ⋅ E ⋅ I1 1 K FI = = = ⋅ E ⋅ I1 l 4 ⋅3 4 β FI = 0 K FE 1 rFE = = = 0.80 K FE + K FI 1 + 1 4 K FI 14 rFI = = = 0.20 K FE + K FI 1 + 1 4 K FE =

2º . Calculamos los momentos y pares de empotramiento.
2 T/m A 4 B m A = +2.67 T ⋅ m mB = −2.67 T ⋅ m M A = MB = − q ⋅ l2 2 ⋅ 42 =− = −2.67 T ⋅ m 12 12

1 T/m MD = − D 2m 2m E

q ⋅c3 12 ⋅ l 2

 12 ⋅ a ⋅ b 2   ⋅ l − 3 ⋅ b +   c2    12 ⋅ a 2 ⋅ b   ⋅ l − 3 ⋅ a +   c2  

q ⋅ c3 ME = − 12 ⋅ l 2

q=1 a=1 b=3 c=2 l=4

1⋅ 2 3 MD = − 12 ⋅ 4 2 1⋅ 2 3 12 ⋅ 4 2

 12 ⋅ 1⋅ 3 2  4 − 3⋅3 +  = −0.92 ⋅ 22     12 ⋅ 12 ⋅ 3   = −0.42 ⋅  4 − 3 ⋅1+   22  

ME = −

4

Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra deIngeniería Rural

mD = 0.92 T ⋅ m mE = −0.42 T ⋅ m

5T

MC = 0 MD = −P ⋅ l = −5 ⋅ 1.5 = −7.5 T ⋅ m D 1.5 m MI = 0 1.25 T/m MF = − mi = 0 m F = − 2 .5 T ⋅ m q ⋅ l2 1.25 ⋅ 4 2 =− = − 2 .5 T ⋅ m 8 8 mD = −7.5 T ⋅ m

C

I 4m

F

Pares de empotramiento
2.67 A -2.67 B

C

-7.5 0.92 D

-0.42 E

-2.5

F

G

H

I

5

Escuela Universitaria de Ingeniería Técnica Agrícolade Ciudad Real

Cátedra de Ingeniería Rural

3º . Cross: Transmisiones.
+ 0.79 +0.02 -0.06 +0.08 -0.16 +0.18 -0.80 +1.15 -2.29 +2.67 0.60 -0.04 +0.02 -0.11 +0.09 -0.54 +0.19 -1.53 +1.15 0.4 - 0.77 + 4.62 - 1.49 +0.03 -0.03 +0.15 -0.08 +0.37 -0.40 +2.29 -1.15 -2.67 0.60 +0.02 -0.02 +0.10 -0.17 +0.25 -0.22 +1.53 0.40 + 1.49 + 0.55 +0.03 -0.06 +0.14 -0.49 +0.29 -0.65 +1.71 -0.42 0.315 - 0.61...
tracking img