Biomecanica

Solo disponible en BuenasTareas
  • Páginas : 7 (1605 palabras )
  • Descarga(s) : 0
  • Publicado : 22 de noviembre de 2011
Leer documento completo
Vista previa del texto
Biomecánica (Esfuerzos Estáticos Coplanares)

Información del método
La consulta de esta información le permitirá conocer los fundamentos y aplicaciones del método

Fundamentos del método

Las lesiones músculo-esqueléticas debidas a la carga física suelen tener un origen común: la sobrecarga de estructuras corporales (articulaciones, tendones y vainas tendinosas, ligamentos, músculos,etc.) debido a niveles repetidos y/o excesivos de esfuerzos en posturas inadecuadas. Aunque muchos métodos de evaluación ergonómica abordan la cuestión de valorar el nivel de riesgo de la realización de esfuerzos, es la aplicación de procedimientos propios de la biomecánica los que permitirán una evaluación más detallada y específica del riesgo.
Evaluar si un esfuerzo en una determinada postura puedeprovocar sobrecarga en alguna estructura del aparato locomotor es una tarea compleja. La biomecánica aborda dicha tarea estableciendo una analogía entre el cuerpo humano y una máquina compuesta de palancas y poleas. Así, puede considerarse que una articulación es el punto de apoyo de una palanca (un hueso largo) accionada por un músculo (la potencia), para vencer una resistencia (el peso propiode los miembros y la carga sostenida) (Figura 1). Al establecer esta analogía es posible aplicar las leyes físicas para determinar si existen sobrecargas articulares durante la ejecución de un esfuerzo.
El esfuerzo al que se somete a la articulación es, por una parte, el debido al mantenimiento del peso de los miembros del cuerpo y de la carga, y por otra, el momento que dichas fuerzas provocansobre la articulación y que debe ser vencido para mantener la postura. Conociendo que el momento de una fuerza respecto a un punto es el producto vectorial del vector fuerza por el vector distancia desde el punto al punto de aplicación de la fuerza y aplicando las ecuaciones de equilibrio, es posible determinar el momento y la fuerza de reacción en la articulación.

Figura 1: Analogíamiembro-palanca

Figura 2: Esquema de momentos y cargas en el codo
En la Figura 2 se pone como ejemplo la articulación del codo. Las cargas soportadas por el codo son: el peso de carga sostenida por la mano (C) y el peso propio del antebrazo y la mano (Pp) aplicado en el centro de gravedad del miembro. Suponiendo que la posición se mantienen estática, en el codo deben aparecer una reacción quecontrarreste dichas cargas (Rc) y un momento (Mc) igual en módulo y signo contrario al provocado por Pp y C. Aplicando las leyes de equilibrio puede conocerse el valor de Mc y Rc:
Rc= C+ Pp
Mc=CxOPxcos(α)+PpxOCdgxcos(α)
Una vez conocidos Mc y Rc será necesario conocer si los valores que adoptan pueden resultar perjudiciales para la articulación.
Este procedimiento puede repetirse para cada una de lasarticulaciones, determinado, de esta forma, si el esfuerzo realizado puede resultar perjudicial para alguna de ellas. Para ello es necesario conocer cuál es el valor máximo recomendable de Mc para cada articulación.
En el ejemplo de la Figura 2, el momento Mc contrarresta el momento creado en el codo por la carga (C) y el peso de la mano y el antebrazo (Pp). El momento Mc en el codo es generado porlos músculos flexores que se encuentran en el segmento brazo: bíceps, músculo braquial y braquirradial. La contracción de este paquete muscular genera una fuerza (Fm) a través del tendón que lo une al hueso Radio, y es dicha fuerza la que genera el momento MC. Así pues puede plantearse que:
Mc=FmxIOxcos(α)
siendo I el punto de inserción del tendón en el hueso, y estimándose habitualmente ladistancia entre I y O como 5 cm cuando el brazo y el antebrazo forman 90º. El valor máximo de Mc será aquél correspondiente a la máxima capacidad de contracción del paquete muscular. La fuerza máxima de una contracción en un músculo, trabajando con la longitud normal, es de unos 8,5 kg/cm2 (aproximadamente). Un bíceps tiene una superficie de corte transversal de unos 16 cm2, por lo que la fuerza...
tracking img