Ejercicios ecuacion lineal

Solo disponible en BuenasTareas
  • Páginas : 18 (4410 palabras )
  • Descarga(s) : 15
  • Publicado : 12 de agosto de 2009
Leer documento completo
Vista previa del texto
P. lineal
• Pasos
• Ejemplo

Programación lineal

[pic][pic][pic][pic][pic][pic][pic][pic][pic]

La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.

Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategiamilitar, etc.

Función objetivo

En esencia la programación lineal consiste en optimizar (maximizar o minimizar) una función objetivo, que es una función lineal de varias variables:

f(x,y) = ax + by.

Restricciones

La función objetivo está sujeta a una serie de restricciones, expresadas por inecuaciones lineales:

|[pic] |a1x + b1y ≤ c1 || |a2x + b2y ≤c2 |
| |...    ...    ... |
| |anx + bny ≤cn |

Cada desigualdad del sistema de restricciones determina un semiplano.

[pic]

Solución factible

El conjunto intersección, de todos los semiplanos formados por las restricciones, determina un recinto, acotado o no, que recibe el nombre deregión de validez o zona de soluciones factibles.

[pic]

Solución óptima

El conjunto de los vértices del recinto se denomina conjunto de soluciones factibles básicas y el vértice donde se presenta la solución óptima se llama solución máxima (o mínima según el caso).

[pic]

Valor del programa lineal

El valor que toma la función objetivo enel vértice de solución óptima se llama valor del programa lineal.

Ejercicios de programación lineal

1Una compañía fabrica y venden dos modelos de lámpara L1 y L2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L1 y de 30 minutos para el L2; y un trabajo de máquina para L1 y de 10 minutos para L2. Se dispone para el trabajo manual de 100 horas al mes ypara la máquina 80 horas al mes. Sabiendo que el beneficio por unidad es de 15 y 10 euros para L1 y L2, respectivamente, planificar la producción para obtener el máximo beneficio.

2Con el comienzo del curso se va a lanzar unas ofertas de material escolar. Unos almacenes quieren ofrecer 600 cuadernos, 500 carpetas y 400 bolígrafos para la oferta, empaquetándolo de dos formas distintas; enel primer bloque pondrá 2 cuadernos, 1 carpeta y 2 bolígrafos; en el segundo, pondrán 3 cuadernos, 1 carpeta y 1 bolígrafo. Los precios de cada paquete serán 6.5 y 7 €, respectivamente. ¿Cuántos paquetes le conviene poner de cada tipo para obtener el máximo beneficio?

3En una granja de pollos se da una dieta, para engordar, con una composición mínima de 15 unidades de una sustancia A yotras 15 de una sustancia B. En el mercado sólo se encuentra dos clases de compuestos: el tipo X con una composición de una unidad de A y 5 de B, y el otro tipo, Y, con una composición de cinco unidades de A y una de B. El precio del tipo X es de 10 euros y del tipo Y es de 30 €. ¿Qué cantidades se han de comprar de cada tipo para cubrir las necesidades con un coste mínimo?

4Se dispone de600 g de un determinado fármaco para elaborar pastillas grandes y pequeñas. Las grandes pesan 40 g y las pequeñas 30 g. Se necesitan al menos tres pastillas grandes, y al menos el doble de pequeñas que de las grandes. Cada pastilla grande proporciona un beneficio de 2 € y la pequeña de 1 €. ¿Cuántas pastillas se han de elaborar de cada clase para que el beneficio sea máximo?

5Unosgrandes almacenes desean liquidar 200 camisas y 100 pantalones de la temporada anterior. Para ello lanzan, dos ofertas, A y B. La oferta A consiste en un lote de una camisa y un pantalón, que se venden a 30 €; la oferta B consiste en un lote de tres camisas y un pantalón, que se vende a 50 €. No se desea ofrecer menos de 20 lotes de la oferta A ni menos de 10 de la B. ¿Cuántos lotes ha de vender de...
tracking img