El diablo de los numeros

Solo disponible en BuenasTareas
  • Páginas : 6 (1372 palabras )
  • Descarga(s) : 0
  • Publicado : 25 de agosto de 2012
Leer documento completo
Vista previa del texto
Quinta noche: El diablo le explica a Robert, por medio de unos cocos, cómo funcionan los números triangulares (1, 3, 6, 10, 15, 21, 28, 36, 45, 55…). Después le pide a Robert que le dé un número para demostrarle que puede confeccionarlo con máximo tres números triangulares (51=15+36, 83=10+28+45, 12=1+1+10). Luego dice que si suma dos números triangulares sucesivos verá un milagro (1+3=4, 3+6=9,6+10=16, 10+15=25), a lo que Robert responde que son números saltados (2², 3², 4², 5²). El diablo le enseña a Robert muchos trucos con estos números y finalmente, le explica algo sobre los números cuadrados, pero Robert se pone de pie y se lanza inmediatamente a la piscina infinita de números.
La sexta noche: En este sueño el diablo le dice a Robert que tiene un amigo llamado Bonatschi queentendió el 0 y se le ocurrió la idea de los números de Bonatschi. El diablo le dice que Bonatschi empezó con el 1, más exactamente con el 1+1=2 y luego cogió las 2 últimas cifras y las sumó hasta el aburrimiento (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144…).El diablo le escribe a Robert los números de Bonatschi en un pergamino mágico que era interminable. Después el diablo le enseña otros trucos conestos números, pero esta vez se vale de un reloj, que en vez de horas marcaba meses, y de unas libres, que terminaron por espantar Robert pues se multiplicaron por montones. Cuando acaba la pesadilla Robert sigue durmiendo tranquilamente hasta que un reloj lo despierta.
Definitivamente “El Diablo de los Números” es el libro perfecto para aquellos que temen a las matemáticas
La séptima noche: Estavez el diablo lleva a Robert a una casa en forma de cubos y a partir de una base de 16 cubos, construyen un triángulo. Luego el diablo le dice a Robert que coloque en el cubo más alto del triángulo el número 1 y en cada uno de los otros cubos escriba lo que resulte de sumar encima y así hasta terminar. El diablo le dice a Robert que, además de encontrar en este triángulo los números normales,también puede hallar los números triangulares, los saltados, los de Bonatschi, los números pares y los impares, diferenciados con colores luminosos que hacen brillar al triángulo. También le dice a Robert que el triángulo de los de los números es antiquísimo y que lo inventó un chino. Después de aprender muchas cosas sobre este triángulo, Robert se queda profundamente dormido
La octava noche: En estesueño Robert se encuentra en el salón de clases con algunos de sus compañeros y como profesor está el diablo de los números, que en esta ocasión le enseña las posibilidades (en este caso 24) que hay para intercambiar puestos entre varios de sus compañeros, utilizando las iniciales de los nombres de cada uno de ellos (A B C D). También el diablo le dice a Robert que le gustaría saber qué pasa si elmundo da la mano a todo el mundo; y llegan a la conclusión que es una operación que se puede solucionar por medio de los números triangulares. Luego le dice que si no quiere pasar tanto tiempo calculando puede hacerlo dibujando unos círculos. El diablo se despide de Robert diciéndole que se va a tomar unas vacaciones.
La novena noche: Robert sueña infinidad de números que parecen ciclistas.Robert pregunta por el cero y éste sale debajo de su cama porque dice que está enfermo, entonces el diablo le dice que se vaya. El diablo ya ha hecho formar a los números y salen en fila los números normales (1, 2, 3, 4, 5, 6, 7, 8, 9, 10…), los números impares (1, 3, 5, 7, 9, 11…), los números de primera, los números de Bonatschi, los triangulares, los saltarines. Después le enseña las series y leexplica trucos con los números quebrados. El diablo desaparece sin hacer ruido.
La décima noche: Robert está con el diablo en una sala de cine y éste le da un ordenador para que practique. El diablo le enseña, con las clases de números ya vistos, como la serie de Bonatschi, los números normales, los números quebrados, con lo saltados, que el péndulo oscila cada vez más hacia una cifra media (1,...
tracking img