Fechas civicas

Solo disponible en BuenasTareas
  • Páginas : 2 (288 palabras )
  • Descarga(s) : 0
  • Publicado : 24 de agosto de 2012
Leer documento completo
Vista previa del texto
EL AREA:
El área es una medida de la extensión de una superficie, expresada en unidades de medida denominadas Unidades de superficie. Para superficies planas el concepto es másintuitivo. Cualquier superficie plana de lados rectos puede triangularse y se puede calcular su área como suma de las áreas de dichos triángulos. Ocasionalmente se usa el término "área" comosinónimo de superficie, cuando no existe confusión entre el concepto geométrico en sí mismo (superficie) y la magnitud métrica asociada al concepto geométrico (área).
Un triángulo,en geometría, es un polígono determinado por tres rectas que se cortan dos a dos en tres puntos (que no se encuentran alineados). Los puntos de intersección de las rectas son los vértices y lossegmentos de recta determinados son los lados del triángulo. Dos lados contiguos forman uno de los ángulos interiores del triángulo.
Por lo tanto, un triángulo tiene 3 ángulosinteriores, 3 lados y 3 vértices.
Por las longitudes de sus lados
Por las longitudes de sus lados, todo triángulo se clasifica:
* como triángulo equilátero, cuando los tres lados deltriángulo equilátero son del mismo tamaño (los tres ángulos internos miden 60 grados ó  radianes.)
* como triángulo isósceles (del griego ἴσος "igual" y σκέλη "piernas", es decir, "con dospiernas iguales"), si tiene dos lados de la misma longitud. Los ángulos que se oponen a estos lados tienen la misma medida. (Tales de Mileto, filósofo griego, demostró que un triánguloisósceles tiene dos ángulos iguales, estableciendo así una relación entre longitudes y ángulos; a lados iguales, ángulos iguales1 ), y
* como triángulo escaleno (del griego σκαληνός"desigual"), si todos sus lados tienen longitudes diferentes (en un triángulo escaleno no hay dos ángulos que tengan la misma medida).
| | |
Equilátero | Isósceles | Escaleno |
tracking img