Mecanica clasica

Solo disponible en BuenasTareas
  • Páginas : 167 (41532 palabras )
  • Descarga(s) : 0
  • Publicado : 28 de febrero de 2012
Leer documento completo
Vista previa del texto
Apuntes de Mecánica Clásica
Fernando O. Minotti 2do cuatrimestre de 2010

Índice general
1. Mecánica de Newton 1.1. Transformación de Galileo . . . . . . . . . . . . . . . . . . . . 1.2. Sistema de varias partículas . . . . . . . . . . . . . . . . . . . 1.3. Teorema del Virial . . . . . . . . . . . . . . . . . . . . . . . . 2. Mecánica analítica 2.1. De…niciones básicas y notación . . . . .. . . . . . . . 2.2. Principio de los trabajos virtuales (D ’ Alembert) . . . 2.3. Ecuaciones de Lagrange . . . . . . . . . . . . . . . . 2.3.1. Partículas en campos electromagnéticos . . . . 2.4. Principio de Hamilton . . . . . . . . . . . . . . . . . 2.4.1. Principio de Maupertuis . . . . . . . . . . . . 2.5. Invarianza de las ecuaciones de Lagrange y simetrías 2.5.1. Teorema de Noether . . . .. . . . . . . . . . 2.6. Acción como función de las q´s . . . . . . . . . . . . 3. Ecuaciones canónicas de Hamilton 3.1. Transformaciones canónicas y corchetes de Poisson 3.1.1. Transformaciones canónicas in…nitesimales . 3.1.2. Teorema de Liouville . . . . . . . . . . . . . 3.1.3. Corchetes de Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 4 8 11 11 13 15 20 21 24 26 29 32 34 37 39 40 42

4. Ecuación de Hamilton-Jacobi 47 4.1. Variables ángulo-acción . . . . . . . . . . . . . . . . . . . . . . 49 4.2. Invariantes adiabáticos . . . . . . . . . . . . . . . . . . . . . . 52 5. Mecánica relativista 5.1. Cinemática relativista . . . . . 5.1.1. Cuadrivectores . . .. . 5.2. Dinámica relativista . . . . . . 5.2.1. Leyes de conservación en 1 . . . . . . . . . . . . . . . sistemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . de varias partículas . . . . 55 55 59 63 68

ÍNDICE GENERAL

2

5.2.2. Desintegración de partículas . . . . . . . . . . . . . . . 71 5.2.3. Choque de partículas . . . . . . . . . . . . . . . . . . . 73 6. Fuerzascentrales 75 6.1. Problema de Kepler . . . . . . . . . . . . . . . . . . . . . . . . 75 6.2. Choque elástico . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3. Dispersión (Scattering) . . . . . . . . . . . . . . . . . . . . . . 86 7. Pequeñas oscilaciones 7.1. Modos normales . . . . . . . . . . . . . . . . 7.2. Oscilaciones de sistemas aislados (moléculas) 7.3. Oscilaciones forzadas yamortiguadas . . . . 7.4. Oscilaciones no lineales en una dimensión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 99 100 101 107

8. Cuerpo rígido 110 8.1. Cinemática . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8.1.1. Matrices de rotación . . . . . . . . . . . . . . . . . . . 112 8.1.2. Ángulos de Euler . . . . . . . . . . . . . . . . . . .. . 114 8.2. Dinámica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8.2.1. Energía cinética . . . . . . . . . . . . . . . . . . . . . . 118 8.2.2. Teorema de Steiner . . . . . . . . . . . . . . . . . . . . 121 8.2.3. Momento angular . . . . . . . . . . . . . . . . . . . . . 122 8.2.4. Ejes principales del tensor de inercia . . . . . . . . . . 123 8.3. Ecuaciones de Euler . . . . .. . . . . . . . . . . . . . . . . . . 125 8.4. Movimiento del cuerpo sólido libre . . . . . . . . . . . . . . . 127 8.4.1. Construcción de Poinsot . . . . . . . . . . . . . . . . . 127 8.4.2. Otra representación geométrica . . . . . . . . . . . . . 129 8.4.3. Estabilidad de la rotación alrededor de los ejes principales129 8.4.4. Elipsoide con simetría de revolución . . . . . . . . . . . 131 8.5.Movimiento de trompos y giróscopos . . . . . . . . . . . . . . 134 8.5.1. Trompo . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.5.2. Estabilidad del trompo vertical . . . . . . . . . . . . . 140 8.5.3. Giróscopo . . . . . . . . . . . . . . . . . . . . . . . . . 141

Capítulo 1 Mecánica de Newton
La mecánica de Newton (también llamada mecánica vectorial) se basa en sus tres leyes...
tracking img