Un grito

Solo disponible en BuenasTareas
  • Páginas : 11 (2732 palabras )
  • Descarga(s) : 0
  • Publicado : 2 de mayo de 2010
Leer documento completo
Vista previa del texto
Sistema de ecuaciones lineales
(Redirigido desde Método de igualación)
En matemática y álgebra lineal, un sistema de ecuaciones lineales, también conocido como sistema lineal de ecuaciones o simplemente sistema lineal, es un conjunto deecuaciones lineales sobre un cuerpo) o un anillo conmutativo). Un ejemplo de sistema lineal de ecuaciones sería el siguiente:
{draw:frame}
El problemaconsiste en encontrar los valores desconocidos de las variables x1, x2 y x3 que satisfacen las tres ecuaciones.
El problema de los sistemas lineales de ecuaciones es uno de los más antiguos de la matemática y tiene una infinidad de aplicaciones, como en procesamiento digital de señales,Análisis estructural, estimación, predicción y más generalmente en programación lineal así como en laaproximación de problemas no lineales de análisis numérico.
Introducción [editar]
En general, un sistema con m ecuaciones lineales n incógnitas puede ser escrito en forma ordinaria como:
{draw:frame}
Donde {draw:frame} son las incógnitas y los números {draw:frame} son los coeficientes del sistema sobre el cuerpo {draw:frame} . Es posible reescribir el sistema separando con coeficientes connotación matricial:
(1) {draw:frame}
Si representamos cada matriz con una única letra obtenemos:
{draw:frame}
Donde A es una matriz) m por n, x es un vector columna de longitud n y b es otro vector columna de longitud m. El sistema de eliminación de Gauss-Jordan se aplica a este tipo de sistemas, sea cual sea el cuerpo) del que provengan los coeficientes.
Sistemas lineales reales[editar]
En esta sección se analizan las propiedades de los sistemas de ecuaciones lineales sobre el cuerpo {draw:frame} , es decir, los sistemas lineales en los coeficientes de las ecuaciones sonnúmeros reales.
Representación gráfica [editar]


La intersección de dos planos) no paralelos es una recta.
Un sistema con {draw:frame} incógnitas se puede representar en el n-espaciocorrespondiente.
En los sistemas con 2 incógnitas, el universo de nuestro sistema será el plano bidimensional), mientras que cada una de las ecuaciones será representada por una recta, si es lineal, o por una curva, si no lo es. La solución será el punto) (o línea) donde intersecten todas las rectas y curvas que representan a las ecuaciones. Si no existe ningún punto en el que intersecten al mismotiempo todas las líneas, el sistema es incompatible, o lo que es lo mismo, no tiene solución.
En el caso de un sistema con 3 incógnitas, el universo será el espacio tridimensional, siendo cada ecuación un plano dentro del mismo. Si todos los planos intersectan en un único punto, las coordenadas de éste serán la solución al sistema. Si, por el contrario, la intersección de todos ellos es una rectao incluso un plano, el sistema tendrá infinitas soluciones, que serán las coordenadas de los puntos que forman dicha línea o superficie.
Para sistemas de 4 ó más incógnitas, la representación gráfica no es intuitiva para el ser humano, por lo que dichos problemas no suelen enfocarse desde esta óptica.
Tipos de sistemas [editar]
Los sistemas de ecuaciones se pueden clasificar según elnúmero de soluciones que pueden presentar. De acuerdo con ese caso se pueden presentar los siguientes casos:
Sistema incompatible si no tiene ninguna solución.
Sistema compatible si tiene alguna solución, en este caso además puede distinguirse entre:
{text:list-item} {text:list-item}
Quedando así la clasificación:
{draw:frame}
Los sistemas incompatiblesgeométricamente se caracterizan por (hiper)planos o rectas que se cruzan sin cortarse. Los sistemas compatibles determinados se caracterizan por un conjunto de (hiper)planos o rectas que se cortan en un único punto. Los sistemas compatibles indeterminados se caracterizan por (hiper)planos que se cortan a lo largo de una recta [o más generalmente un hiperplano de dimensión menor]. Desde un punto de vista...
tracking img