Ecuacion de segundo grado

Páginas: 5 (1044 palabras) Publicado: 25 de mayo de 2014
Una ecuación de segundo grado1 2 o ecuación cuadrática de una variable es una ecuación que tiene la forma de una suma algebraica de términos cuyo grado máximo es dos, es decir, una ecuación cuadrática puede ser representada por un polinomio de segundo grado o polinomio cuadrático. La expresión canónica general de una ecuación cuadrática de una variable es:

ax^2 + bx + c = 0, \quad\mbox{para}\;a\neq 0

donde x representa la variable y a, b y c son constantes; a es el coeficiente cuadrático (distinto de 0), b el coeficiente lineal y c es el término independiente. Este polinomio se puede representar mediante una gráfica de una función cuadrática o parábola. Esta representación gráfica es útil, porque la intersección de esta gráfica con el eje horizontal coincide con las solucionesde la ecuación (y dado que pueden existir dos, una o ninguna intersección, esos pueden ser el número de soluciones reales de la ecuación).Discriminante[editar]


Ejemplo del signo del discriminante:
■ < 0: no posee soluciones reales;
■ = 0: posee una solución real (multiplicidad 2);
■ > 0: posee dos soluciones reales distintas.
En la fórmula anterior, la expresión dentro de la raíz cuadradarecibe el nombre de discriminante de la ecuación cuadrática. Suele representarse con la letra D o bien con el símbolo Δ (delta):

\Delta = b^2 - 4ac.\,
Una ecuación cuadrática con coeficientes reales tiene o bien dos soluciones reales distintas o una sola solución real de multiplicidad 2, o bien dos raíces complejas. El discriminante determina la índole y la cantidad de raíces.

Dossoluciones reales y diferentes si el discriminante es positivo (la parábola cruza dos veces el eje de las abscisas: X):
\frac{-b + \sqrt {\Delta}}{2a} \quad\text{y}\quad \frac{-b - \sqrt {\Delta}}{2a}.
Una solución real doble si el discriminante es cero (la parábola sólo toca en un punto al eje de las abscisas: X):
-\frac{b}{2a} . \,\!
Dos números complejos conjugados si el discriminante es negativo(la parábola no corta al eje de las abscisas: X):
\frac{-b}{2a} + i \frac{\sqrt {-\Delta}}{2a}, \quad\text{y}\quad \frac{-b}{2a} - i \frac{\sqrt {-\Delta}}{2a},
donde i es la unidad imaginaria.
En conclusión, las raíces son distintas si el discriminante es no nulo, y son números reales si –sólo si– el discriminante es no negativo.

Ecuación bicuadrática[editar]
Éstas son un caso particular dela ecuación de cuarto grado. Les faltan los términos a la tercera y a la primera potencia. Su forma polinómica es:

ax^4 + {bx^2}^{} + c = 0
Para resolver estas ecuaciones tan solo hay que hacer el cambio de variable {x^2}^{}=u
Con lo que nos queda: {au^2}^{} + bu + c = 0 El resultado resulta ser una ecuación de segundo grado que podemos resolver usando la fórmula:

u= \frac{-b \pm\sqrt{b^2-4ac}}{2a}
Ahora bien, esto no nos da las cuatro soluciones esperadas. Aún hemos de deshacer el cambio de variable. Así las cuatro soluciones serán:

x_1 = +\sqrt{u_1}
x_2 = -\sqrt{u_1}
x_3 = +\sqrt{u_2}
x_4 = -\sqrt{u_2}
Clasificación[editar]
La ecuación de segundo grado se clasifica de la forma siguiente:[cita requerida]

1. Completa. Es la forma canónica:

ax^2 + bx + c= 0 \,

donde las tres literales: a, b y c, son distintas de cero.

Esta ecuación admite tres maneras para las soluciones: 1) dos números reales y diferentes; 2) dos números reales e iguales (un número real doble); 3) dos números complejos conjugados, según el valor del discriminante

\Delta = b^2 - 4ac \,

ya sea positivo, cero o negativo, respectivamente.

Se resuelven porfactorización, o por el método de completar el cuadrado o por fórmula general. Esta fórmula se deduce más adelante.

2. Incompleta pura. Puede expresarse de las dos maneras siguientes:

ax^2 + c = 0 \,

donde los valores de a y de c son distintos de cero. Se resuelve despejando x mediante operaciones inversas. Su solución son dos raíces reales que difieren en el signo si los valores de a y de c...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Ecuaciones de segundo grado
  • ecuaciones de segundo grado
  • 1.7 : ECUACIÓN DE SEGUNDO GRADO
  • Ecuación de Segundo Grado
  • Ecuacion de segundo grado
  • Ecuaciones de segundo grado
  • ECUACIONES DE SEGUNDO GRADO
  • ecuaciones de segundo grado

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS