Estimacion mco

Páginas: 12 (2848 palabras) Publicado: 9 de abril de 2011
BREVE APUNTE SOBRE LA ESTIMACIÓN DE LOS PARÁMETROS MCO Y MÁXIMA VEROSIMILITUD

Ramón Mahía
Noviembre 2009

I.- Planteamiento

Sea el Modelo Básico de Regresión Lineal (MBRL) definido como:

[pic]

donde los parámetros β cuantifican la relación parcial de cada variable exógena X con la endógena Y.

Partimos de que se ha completado la etapa de especificación del modelo econométrico yson conocidos por tanto los valores de la “Y” y las “X” para la muestra temporal o transversal seleccionada. Se plantea ahora la siguiente pregunta ¿cómo obtener una buena estimación de esos parámetros β a partir de los datos disponibles para “Y” y para cada una de las “X”?

II.- Estimador de Mínimos Cuadrados Ordinarios

Uno de los procedimientos más conocidos es el denominado Estimador deMínimos Cuadrados Ordinarios (MCO). Este procedimiento plantea utilizar, como estimación de los parámetros, aquella combinación de β1, β2,…… βk que minimice los errores que el modelo cometerá. ¿Qué significa esto?. Está claro que, si dispusiéramos a priori de los parámetros estimados podríamos escribir el MBRL NO como:

[pic]

sino como:

[pic]

y, por tanto, podríamos computar el error oresiduo que el modelo comete en la estimación de cada valor de la endógena comparando, de forma inmediata, el valor real de la endógena en cada observación con el valor estimado:

[pic]

Este error dependería, evidentemente, del valor asignado a las estimaciones de los parámetros β; pues bien, el método de MCO sugiere utilizar aquella combinación de parámetros estimados que minimice la suma alcuadrado de todos los errores cometidos para las “n” observaciones disponibles:

[pic]

Para obtener algebraicamente una expresión de cálculo operativa para los estimadores MCO, procedemos de la siguiente forma:

Desarrollo 1:

Derivación NO MATRICIAL de la expresión de los estimadores MCO

• La expresión a minimizar es:

[pic]

• Para obtener los valores de cada uno delos “k” parámetros [pic] que minimizan esta expresión derivamos con respecto a cada uno de ellos e igualamos a cero, obteniendo “k” expresiones del tipo:

[pic]

• Estas expresiones, se denominan “ecuaciones normales”. En este sistema de las ecuaciones normales las incógnitas son los parámetros [pic] a estimar y los valores conocidos son los datos muestrales recogidos de la “y” y de las“x”.

• Observadas una a una, para cada parámetro, las expresiones de las ecuaciones normales son:

[pic]
[pic]
[pic]
[pic]
[pic]

• Lo que, teniendo en cuenta las expresiones matriciales del vector endógeno “Y” y de la matriz de variables exógenas “X”, puede expresarse matricialmente como:

[pic]

• De donde se obtiene fácilmente(“despejando”) la expresión final matricial[1] del vector de parámetros estimados [pic] :

[pic]

Desarrollo 2:

Derivación MATRICIAL de la expresión de los estimadores MCO

Puede comprobarse cómo podríamos haber planteado el desarrollo de la expresión de los estimadores la estimación utilizando exclusivamente álgebra matricial. Efectivamente, la minimización de residuos puede plantearse a partirdel vector de residuos “e” como:

[pic]

[pic]

Obsérvese cómo los productos matriciales [pic] y [pic] son en realidad el mismo e iguales a un escalar: efectivamente, la primera expresión es la transpuesta de la segunda y dado que el orden de cada una de ellas es (1x1), es decir, un escalar, estamos viendo en realidad dos expresiones equivalentes del mismo número (escalar). Así pues, podemosescribir [pic] + [pic] como [pic] ó bien cómo [pic]de modo que tenemos:

[pic]

Ara resolver ahora la minimización, recurrimos de nuevo al concepto de derivada (necesariamente parcial) para lo que, en el caso de las matrices, debemos recordar una propiedad de utilidad: para cualquier par de matrices A y B se cumple que:

[pic]

En nuestro caso, debemos derivar respecto a [pic] (ó...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Estimacion
  • Estimacion
  • estimacion
  • Estimacion
  • Estimacion
  • Estimacion
  • Estimación
  • Estimacion

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS