Funcion cubica
Definición:
|FUNCIÓN |DOMINIO |CONTRADOMINIO |
| | | |
|[pic] |Todo número real|Todo número real |
| |[pic] |[pic] |
Ejemplo 1: Realiza la gráfica de la función y = x3
[pic]
Técnicas de Conteo
Si el número de posibles resultados de un experimento es pequeño, es relativamente fácil listar y contar todos losposibles resultados. Al tirar un dado, por ejemplo, hay seis posibles resultados.
Si, sin embargo, hay un gran número de posibles resultados tales como el número de niños y niñas por familias con cinco hijos, sería tedioso listar y contar todas las posibilidades.
Las posibilidades serían, 5 niños, 4 niños y 1 niña, 3 niños y 2 niñas, 2 niños y 3 niñas, etc. Para facilitar el conteo examinaremos trestécnicas: La técnica de la multiplicación, la técnica de la permutación, y la técnica de la combinación.
La Técnica de la Multiplicación
La técnica de la multiplicación: Si hay m formas de hacer una cosa y hay n formas de hacer otra cosa, hay m x n formas da hacer ambas cosas
En términos de fórmula
Número total de arreglos = m x n
Esto puede ser extendido a más de dos eventos. Para treseventos, m, n, y o:
Número total de arreglos = m x n x o
Ejemplo:
Un vendedor de autos quiere presentar a sus clientes todas las diferentes opciones con que cuenta: auto convertible, auto de 2 puertas y auto de 4 puertas, cualquiera de ellos con rines deportivos o estándar. ¿Cuántos diferentes arreglos de autos y rines puede ofrecer el vendedor?
Para solucionar el problema podemos emplear la técnicade la multiplicación, (donde m es número de modelos y n es el número de tipos de rin).
Número total de arreglos = 3 x 2
No fue difícil de listar y contar todos los posibles arreglos de modelos de autos y rines en este ejemplo. Suponga, sin embargo, que el vendedor tiene para ofrecer ocho modelos de auto y seis tipos de rines. Sería tedioso hacer un dibujo con todas las posibilidades. Aplicandola técnica de la multiplicación fácilmente realizamos el cálculo:
Número total de arreglos = m x n = 8 x 6 = 48
La Técnica de la Permutación
Como vimos anteriormente la técnica de la multiplicación es aplicada para encontrar el número posible de arreglos para dos o más grupos. La técnica de la permutación es aplicada para encontrar el número posible de arreglos donde hay solo u grupo de objetos.Como ilustración analizaremos el siguiente problema: Tres componentes electrónicos - un transistor, un capacitor, y un diodo - serán ensamblados en una tablilla de una televisión. Los componentes pueden ser ensamblados en cualquier orden. ¿De cuantas diferentes maneras pueden ser ensamblados los tres componentes?
Las diferentes maneras de ensamblar los componentes son llamadas permutaciones, yson las siguientes: T D C D T C C D T T C D D C T C T D
Permutación: Todos los arreglos de r objetos seleccionados de n objetos posibles
La fórmula empleada para contar el número total de diferentes permutaciones es:
n P r = n!
(n – r )!
Donde:
nPr es el número de permutaciones posible n es el número total de objetos r es el número de objetos utilizados en un mismo momento
n P r = n! = 3! =3 x 2 = 6
(n – r )! ( 3 – 3 )! 1
Ejemplo:
Suponga que hay ocho tipos de computadora pero solo tres espacios disponibles para exhibirlas en la tienda de computadoras. ¿De cuantas maneras diferentes pueden ser arregladas las 8 máquinas en los tres espacios disponibles?
n P r = n! = 8! = 8! = 336
(n – r )! ( 8 – 3 )! 5!
En el análisis anterior los arreglos no presentan repeticiones,...
Regístrate para leer el documento completo.