Integrales
Tabla de derivadas
Funci´n constante o Funci´n identidad o Funci´n potencial o Funci´n radical o
f (x) = k (k ∈ R) f (x) = x f (x) = xn(n ∈ R) f (x) = √ n x (n ≥ 2)
f (x) = 0 f (x) = 1 f (x) = nxn−1 f (x) = √ n 1
n xn−1 1 ln(a)x 1 x
Funciones logar´ ıtmicas
f (x) = loga (x) f (x) = ln(x)f (x) = f (x) =
Funciones exponenciales
f (x) = ax f (x) = ex
f (x) = ln(a)ax f (x) = ex f (x) = cos(x) f (x) = − sen(x) f (x) = 1 = 1 + tg2 (x) cos2 (x)1 1 − x2 −1 1 − x2
Funciones trigonom´tricas e
f (x) = sen(x) f (x) = cos(x) f (x) = tg(x) f (x) = arcsen(x) f (x) = arccos(x) f (x) = arctg(x)
f (x) = √ f(x) = √ f (x) =
1 1 + x2
1
Tabla de integrales inmediatas
λdx = λx + C, para todo λ ∈ R xn dx = xn+1 + C, para todo n ∈ R, n = −1 n+1
1 dx = ln |x| +C x ex dx = ex + C ax dx = ax + C, para todo a ∈ R, con a > 0 ln(a)
sen(x)dx = − cos(x) + C
cos(x)dx = sen(x) + C 1 dx = cos2 (x) 1 dx = sen2 (x) √ 1 + tg2 (x)dx = tg(x) + C 1 + cotg2 (x) dx = − cotg(x) + C
1 dx = arcsen(x) + C 1 − x2
1 dx = arctg(x) + C 1 + x2
2
Tabla de integrales inmediatas generalizadast (x)dx = t(x) + C [t(x)]n t (x)dx = [t(x)]n+1 + C, para todo n ∈ R, n = −1 n+1
t (x) dx = ln |t(x)| + C t(x) et(x) t (x)dx = et(x) + C at(x) t (x)dx = at(x) + C,para todo a ∈ R, con a > 0 ln(a)
sen(t(x))t (x)dx = − cos(t(x)) + C
cos(t(x))t (x)dx = sen(t(x)) + C t (x) dx = cos2 (t(x)) t (x) dx = sen2 (t(x)) t (x) 1 −(t(x))2 1 + tg2 (t(x)) t (x)dx = tg(t(x)) + C 1 + cotg2 (t(x)) t (x)dx = − cotg(t(x)) + C
dx = arcsen(t(x)) + C
t (x) dx = arctg(t(x)) + C 1 + (t(x))2
3
Regístrate para leer el documento completo.