Lectura Derivadas
2.1
2
Dos problemas
con el mismo tema
2.2 La derivada
2.3 Reglas para
encontrar derivadas
2.4 Derivadas
de funciones
trigonométricas
2.5 La regla de la
cadena
2.6 Derivadas
de orden superior
2.7 Derivación
implícita
2.8 Tasas de cambio
relacionadas
2.9 Diferenciales y
aproximaciones
La derivada
2.1
Dos problemas con el mismo tema
Nuestro primer problema es muy antiguo; se remonta ala época del gran científico
griego Arquímedes (287-212 A. C.). Nos referimos al problema de la pendiente de la recta
tangente. Nuestro segundo problema es más reciente. Surgió con los intentos de Kepler
(1571-1630), Galileo (1564-1642), Newton (1642-1727) y otros para describir la velocidad de un cuerpo en movimiento. Es el problema de la velocidad instantánea.
Los dos problemas, uno geométrico yel otro mecánico, parecen no estar muy relacionados. En este caso, las apariencias engañan. Los dos problemas son gemelos idénticos.
La recta tangente La noción de Euclides de una tangente, como una recta que toca a una curva en un solo punto es totalmente correcta para circunferencias (véase la
figura 1); pero completamente insatisfactoria para otras curvas (véase la figura 2). La
idea de unatangente, en P a una curva como la recta que mejor se aproxima a la curva
cerca de P es bastante mejor, pero aún muy vaga para la precisión matemática. El concepto de límite proporciona una manera de obtener una mejor descripción.
Sea P un punto en una curva y sea Q un punto móvil cercano a P en esa curva.
Considere la recta que pasa por P y Q, llamada recta secante. La recta tangente en P es
laposición límite (si ésta existe) de la recta secante cuando Q se mueve hacia P a lo largo de la curva (véase la figura 3).
Suponga que la curva es la gráfica de la ecuación y = f1x2. Entonces, P tiene
coordenadas (c, f(c)), un punto cercano Q tiene coordenadas 1c + h, f1c + h22, y la
recta secante de P y Q tiene pendiente m sec dada por (véase la figura 4):
msec =
2.10 Repaso del capítulo
f1c + h2- f1c2
h
y
y = f (x)
Recta secante
Rectas
secantes
Q
f (c + h)
(
, f( + h))
Q
P
Q
Recta tangente
Recta
tangente
f(c + h – f c)
Recta tangente en P
Q
(c, f
Figura 1
f (c)
P
h
c
mtan
La recta tangente es la posición
límite de la recta secante.
P
Figura 3
Recta tangente en P
c+h
msec
x
→0
Figura 4
Mediante el concepto de límite, que estudiamos en el capítulo anterior, ahorapodemos
dar una definición formal de la recta tangente.
Figura 2
Definición Recta tangente
La recta tangente a la curva y = f1x2 en el punto P(c, f(c)) es aquella recta que
pasa por P con pendiente
m tan = lím m sec = lím
h:0
h:0
f1c + h2 - f1c2
h
siempre y cuando este límite exista y no sea q o - q .
94 Capítulo 2 La derivada
■ EJEMPLO 1
y
Encuentre la pendiente de la recta tangente a lacurva y = f1x2 = x2
en el punto (2, 4).
SOLUCIÓN La recta cuya pendiente estamos buscando se muestra en la figura 5. Es
claro que tiene una pendiente positiva grande.
(2, 4)
4
mtan = lím
3
y = x2
h:0
2
f12 + h2 - f122
h
= lím
12 + h22 - 22
h
= lím
4 + 4h + h2 - 4
h
= lím
h14 + h2
h
h:0
1
–1
1
h:0
x
2
Figura 5
h:0
= 4
■
■ EJEMPLO 2 2
Encuentre las pendientes de lasrectas tangentes a la curva
y = f1x2 = - x + 2x + 2 en los puntos con abscisas - 1, 12 , 2, y 3.
y
SOLUCIÓN En lugar de realizar cálculos por separado, parece mejor calcular la
pendiente en el punto con abscisa c y luego obtener las cuatro respuestas deseadas por
medio de sustitución.
m=1
h:0
=
1
–2
1
m=4
x
2
=
m = –4
–1
=
=
y = –x
– 2 + 2x + 2
Las cuatro pendientes deseadas (obtenidashaciendo c = - 1, 12 , 2, 3 ) son 4, 1, - 2, y
-4. Estas respuestas parecen ser coherentes con la gráfica en la figura 6.
■
Figura 6
■ EJEMPLO 3
Encuentre la ecuación de la recta tangente a la curva y = 1>x en
A 2, 12 B (véase la figura 7).
y
3
2
f1c + h2 - f1c2
h
-1c + h22 + 21c + h2 + 2 - 1-c2 + 2c + 22
lím
h:0
h
-c2 - 2ch - h2 + 2c + 2h + 2 + c2 - 2c - 2
lím
h:0
h
h1-2c - h + 22
lím...
Regístrate para leer el documento completo.