Matematicas Especiales

Páginas: 16 (3902 palabras) Publicado: 9 de octubre de 2012
1

CHAPTER 1
1.1 For body weight:
4.5  4.5  12  4.5  33  TW  60

TW = 1.5% For total body water:
7.5  7.5  20  7.5  2.5  IW  100

IW = 55% 1.2

Qstudents  30 ind  80

J s kJ  15 min  60   2160 kJ ind s min 1000 J

m

PVMwt (101.325 kPa)(10m  8m  3m  30  0.075 m 3 )(28.97 kg/kmol )   286.3424 kg RT (8.314 kPa m 3 /( kmol K)((20  273.15)K )
Qstudents 2160kJ   10 .50615 K mC v (286 .3424 kg )(0.718 kJ/(kg K))

T 

Therefore, the final temperature is 20 + 10.50615 = 30.50615oC. 1.3 This is a transient computation. For the period from ending June 1: Balance = Previous Balance + Deposits – Withdrawals Balance = 1512.33 + 220.13 – 327.26 = 1405.20 The balances for the remainder of the periods can be computed in a similar fashion as tabulatedbelow:
Date 1-May $ 220.13 1-Jun $ 216.80 1-Jul $ 450.25 1-Aug $ 127.31 1-Sep $ 350.61 $ 1363.54 $ 106.80 $ 1586.84 $ 378.61 $ 1243.39 $ 327.26 $ 1405.20 Deposit Withdrawal Balance $ 1512.33

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior writtenpermission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

2 1.4 Q1,in  Q2,out  v3,out A3
A3  Q1,in  Q2,out v3,out
in out



40 m 3 /s  20 m 3 /s  3.333 m 2 6 m/s

1.5

M - M

0

Food  Drink  Air In Metabolism  Urine  Skin  Feces  Air Out  Sweat Drink  Urine  Skin  Feces  Air Out  Sweat  Food  Air In  Metabolism Drink  1.4  0.35  0.2  0.4  0.2  1  0.05  0.3  1.2 L

1.6 v(t ) 

gm (1  e ( c / m) t ) c
9.8(70) (1  e (12 / 70) 10 )  46.8714 12

jumper #1: v(t ) 

jumper #2: 46.8714 

9.8(75) (1  e (15 / 75) t ) 15

46.8714  49  49e 0.2 t 0.04344 e 0.2 t
ln 0.04344  0.2t

t

ln 0.04344  15.6818 s  0.2

1.7 You are given the following differential equation with the initial condition, v(t = 0) = v(0),
dv c g v dt m

The most efficient way to solve this is with Laplace transforms

sV ( s)  v(0) 

g c  V ( s) s m

Solve algebraically for the transformed velocity
V ( s)  v(0) g  s  c / m s ( s  c / m)

(1)PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using thisManual, you are using it without permission.

3

The second term on the right of the equal sign can be expanded with partial fractions
g A B   s ( s  c / m) s s  c / m

Combining the right-hand side gives
g A( s  c / m)  Bs  s ( s  c / m) s ( s  c / m)

By equating like terms in the numerator, the following must hold
gA c m

0  As  Bs

The first equation can be solved for A =mg/c. According to the second equation, B = –A. Therefore, the partial fraction expansion is
g mg / c mg / c   s ( s  c / m) s s c/m

This can be substituted into Eq. 1 to give

V ( s) 

v(0) mg / c mg / c   s c/m s s c/m

Taking inverse Laplace transforms yields

v(t )  v(0)e (c / m)t 
or collecting terms
v(t )  v(0)e ( c / m)t 

mg mg ( c / m)t  e c c

mg 1  e( c / m )t c





The first part is the general solution and the second part is the particular solution for the constant forcing function due to gravity. 1.8 At t = 10 s, the analytical solution is 44.87 (Example 1.1). The relative error can be calculated with

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed,...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Matematicas Especiales
  • Matematicas Especiales
  • matematicas especiales
  • Matematicas especiales unad
  • didactica especial de las matematicas
  • Licenciatura En Educación Con Especialidad En Matemáticas
  • Unad Matematicas Especiales
  • Matematicas especiales act #2

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS