matrices y determinantes
Se llama matriz de orden m×n a todo conjunto rectangular de elementos aij
dispuestos en m líneas horizontales (filas) y n verticales (columnas) de la forma:
Abreviadamente suele expresarse en la forma A =(aij), con i =1, 2, ..., m, j =1, 2,
..., n. Los subíndices indican la posición del elemento dentro de la matriz, el
primero denota la fila ( i ) y el segundo lacolumna ( j ). Por ejemplo el elemento
a25 será el elemento de la fila 2 y columna 5.
Tipos de matrices:
Matriz fila:
Es una matriz que solo tiene una fila, es decir m =1 y por tanto es de
orden 1 x n.
a11
a12 a13 a1n
Matriz columna: Es una matriz que solo tiene una columna, es decir, n =1
y por tanto es de orden m x 1.
a11
a21
a
31
a
m1
Matriz cuadrada:
Es aquella que tiene el mismo número de filas que de columnas, es
decir m = n. En estos casos se dice que la matriz cuadrada es de orden n, y no n x n.
Los elementos aij con i = j, o sea aii forman la llamada diagonal principal de la matriz
cuadrada, y los elementos aij con i + j = n +1 la diagonal secundaria.
a11 a12
a21 a22
a
a32
31
a
n1an 2
a13 a1n
a23 a2 n
a33 a3n
an 3 ann
Tipos de matrices:
Matriz traspuesta: Dada una matriz A, se llama traspuesta de A, y se representa por At, a la
matriz que se obtiene cambiando filas por columnas. La primera fila de A es la primera fila de
At , la segunda fila de A es la segunda columna de At, etc.
De la definición se deduce que si A es deorden m x n, entonces At es de orden n x m.
Matriz simétrica: Una matriz cuadrada A es simétrica si A = At, es decir,
si aij = aji " i, j.
Matriz antisimétrica: Una matriz cuadrada es antisimétrica si A = –At, es
decir, si aij = –aji " i, j.
Tipos de matrices:
Matriz nula es aquella que todos sus elementos son 0 y se representa por 0
La matriz
es una matriz nula de orden 3
Lamatriz
es una matriz nula de orden 2 x 4
Tipos de matrices:
Matriz diagonal: Es una matriz cuadrada, en la que todos los elementos no
pertenecientes a la diagonal principal son nulos.
Matriz escalar: Es una matriz diagonal con todos los elementos de la diagonal
iguales
Matriz unidad o identidad: Es una matriz escalar con los elementos de la
diagonal principal iguales a 1.
Tiposde matrices:
Matriz Triangular:
Es una matriz cuadrada que tiene nulos todos los
elementos que están a un mismo lado de la diagonal principal.
Las matrices triangulares pueden ser de dos tipos:
Triangular Superior: Si los elementos que están por debajo de la
diagonal principal son todos nulos. Es decir, aij = 0 " i < j.
Triangular Inferior: Si los elementos que están por encima de ladiagonal principal son todos nulos. Es decir, aij = 0 " j < i.
matriz triangular inferior
matriz triangular superior
Operaciones con matrices
Trasposición de matrices
Suma y diferencia de matrices
Producto de una matriz por un número
Propiedades simplificativas
Producto de matrices
Matrices inversibles
Operaciones con matrices
Trasposición de matrices
Dada una matriz deorden m x n, A = (aij), se llama matriz traspuesta de A, y se representa por
At, a la matriz que se obtiene cambiando las filas por las columnas (o viceversa) en la matriz A.
Es decir:
Propiedades de la trasposición de matrices:
1ª.- Dada una matriz A, siempre existe su traspuesta y además es única.
2ª.- La traspuesta de la matriz traspuesta de A es A. a (At)t = A.
Operaciones conmatrices
Suma y diferencia de matrices
La suma de dos matrices A=(aij), B=(bij) de la misma dimensión, es otra matriz S=(sij) de la misma
dimensión que los sumandos y con término genérico sij=aij+bij. Por tanto, para poder sumar dos
matrices estas han de tener la misma dimensión.
La suma de las matrices A y B se denota por A+B.
Ejemplo
Sin embargo,
no se pueden sumar.
La diferencia...
Regístrate para leer el documento completo.