metod de gauss

Páginas: 7 (1529 palabras) Publicado: 30 de marzo de 2014
Método De Gauss-Jordan

Un sistema de ecuaciones se resuelve por el método de Gauss cuando se obtienen sus soluciones mediante la reducción del sistema dado a otro equivalente en el que cada ecuación tiene una incógnita menos que la anterior. Cuando se aplica este proceso, la matriz resultante se conoce como: "forma escalonada".

El método fue presentado por el matemático Carl FriedrichGauss, pero se conocía anteriormente en un importante libro matemático chino llamado Jiuzhang suanshu o Nueve capítulos del arte matemático.

Desarrollo

Para resolver sistemas de ecuaciones lineales aplicando este método, se debe en primer lugar anotar los coeficientes de las variables del sistema de ecuaciones lineales en su notación matricial:

Para ilustrarnos mejor lo analizaremos con unejemplo concreto:

Sea el sistema de ecuaciones:

Procedemos al primer paso para encontrar su solución, anotarlo en su forma matricial:

Una vez hecho esto podemos empezar a operar con las distintas filas y columnas de la matriz para transformarla en su matriz identidad, teniendo siempre en cuenta la forma de la misma:

Lo primero que debemos hacer es transformar el 2 de la 1ª fila de lamatriz original en el 1 de la 1ª fila de la matriz identidad; para hacer esto debemos multiplicar toda la 1ª fila por el inverso de 2, es decir ½.


Luego debemos obtener los dos ceros de la primera columna de la matriz identidad, para lograr esto, buscamos el opuesto de los números que se ubicaron por debajo del 1 de la primera columna, en este caso el opuesto de 3 que será -3 y el opuesto de 5que será -5.

Una vez hecho esto, se procederá a multiplicar los opuestos de estos números por cada uno de los elemento de la 1ª fila y estos se sumaran a los números de su respectiva columna. Por ej.: en el caso de la 2º fila, se multiplicara a -3 (opuesto de 3) por cada uno de los elementos de la 1º fila y se sumara su resultado con el numero que le corresponda en columna de la segunda fila.En el caso de la 3ª fila se multiplicara a -5 (opuesto de 5) por cada uno de los elementos de la 1º fila y se sumara su resultado con el número que le corresponda en columna de la tercera fila.

Nuestro siguiente paso es obtener el 1 de la 2ª fila de la matriz identidad, y procedemos de igual forma que antes, es decir multiplicamos toda la fila por el inverso del numero que deseamos transformaren 1, en este caso -13/2, cuyo inverso es -2/13.

Además si observamos la tercera fila, nos damos cuenta que todos los elementos poseen el mismo denominador, entonces podemos eliminarlos multiplicando todos los elementos de la 3º fila por 2 (el denominador); si bien este no es un paso necesario para el desarrollo del método, es útil para facilitar cálculos posteriores.

Ahora queremos obtenerel 0 que se ubica en la 3ª fila, 2ª columna de la matriz identidad, para hacer esto buscamos el opuesto del numero que se ubica en la 3ª fila, 2ª columna de la matriz con la cual estamos operando, en este caso -17, cuyo opuesto será 17; lo que hacemos ahora es multiplicar este número por todos los elementos de la 2ª fila y sumar esos resultados con el numero que le corresponde en columna de la 3ªfila.


A esta altura podemos observar como la matriz con la cual estamos operando empieza a parecerse a la matriz identidad.

Nuestro siguiente paso es obtener el 1 correspondiente a la 3ª fila, 3ª columna de la matriz identidad, ahora bien, aplicamos el mismo procedimiento con el que estábamos trabajando, es decir que vamos a multiplicar toda la 3ª fila por el inverso del numero que seencuentre en la posición de la 3ª fila, 3ª columna, en este caso 96/13, cuyo inverso será 13/96.

Luego debemos obtener los dos ceros de la tercera columna de la matriz identidad, para lograr esto, buscamos el opuesto de los números que se ubicaron por encima del 1 de la 3ª columna de la matriz con la cual estamos operando, en este caso 11/13 y ½ cuyos opuestos serán - 11/13 y -½, respectivamente....
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Método de gauss
  • Método De Gauss
  • Metodo de gauss
  • METODO DE GAUSS
  • Metodos gauss-jordan y gauss-seidel
  • Metodo gauss seidel, gauss y gauss jordan (
  • Metodo de gauss jordan en c
  • Metodo de gauss

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS