numeros complejos
Historia de los números complejos
La primera referencia conocida a raíces cuadradas de números negativos proviene del trabajo de los matemáticos griegos, como Herón de Alejandría en el siglo I antes de Cristo, como resultado de una imposible sección de una pirámide. Los complejos se hicieron más patentes en el Siglo XVI, cuando la búsqueda de fórmulas que dieran las raíces exactas delos polinomios de grados 2 y 3 fueron encontradas por matemáticos italianos como Tartaglia, Cardano.
Aunque sólo estaban interesados en las raíces reales de este tipo de ecuaciones, se encontraban con la necesidad de lidiar con raíces de números negativos. El término imaginario para estas cantidades fue acuñado por Descartes en el Siglo XVII y está en desuso. La existencia de números complejosno fue completamente aceptada hasta la más abajo mencionada interpretación geométrica que fue descrita por Wessel en 1799, redescubierta algunos años después y popularizada por Gauss. La implementación más formal, con pares de números reales fue dada en el Siglo XIX.
Racionalización de Números Complejos
La división de números complejos que se expresan en forma cartesiana se facilita por unproceso llamado racionalización. La forma de fracción
presenta dificultades, debido a la parte imaginaria del denominador. El denominador se puede forzar a ser real, multiplicando ambos numerador y denominador por el conjugado del denominador.
Expandiéndolo, se pone de nuevo el resultado de la división en forma cartesiana.
Desigualdad matemática
En matemáticas, una desigualdad esuna relación de orden que se da entre dos valores cuando estos son distintos (en caso de ser iguales, lo que se tiene es una igualdad).
Si los valores en cuestión son elementos de un conjunto ordenado, como los enteros o los reales, entonces pueden ser comparados.
La notación a < b significa a es menor que b;
La notación a > b significa a es mayor que b;
estas relaciones se conocen comodesigualdades estrictas, puesto que a no puede ser igual a b; también puede leerse como "estrictamente menor que" o "estrictamente mayor que".
La notación a ≤ b significa a es menor o igual que b;
La notación a ≥ b significa a es mayor o igual que b;
estos tipos de desigualdades reciben el nombre de desigualdades amplias (o no estrictas).
La notación a ≪ b significa a es mucho menor que b;
Lanotación a ≫ b significa a es mucho mayor que b;
esta relación indica por lo general una diferencia de varios órdenes de magnitud.
La notación a ≠ b significa que a no es igual a b. Tal expresión no indica si uno es mayor que el otro, o siquiera si son comparables.
no sabemos
Productos notables
Sabemos que se llama producto al resultado de una multiplicación. También sabemos que losvalores que se multiplican se llaman factores.
Se llama productos notables a ciertas expresiones algebraicas que se encuentran frecuentemente y que es preciso saber factorizarlas a simple vista; es decir, sin necesidad de hacerlo paso por paso.
Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.
A continuación veremos algunasexpresiones algebraicas y del lado derecho de la igualdad se muestra la forma de factorizarlas (mostrada como un producto notable).
Cuadrado de la suma de dos cantidades o binomio cuadrado
a2 + 2ab + b2 = (a + b)2
El cuadrado de la suma de dos cantidades es igual al cuadrado de la primera cantidad, más el doble de la primera cantidad multiplicada por la segunda, más el cuadrado de la segundacantidad.
Demostración:
Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a2 + 2ab + b2 debemos identificarla de inmediato y saber que podemos factorizarla como (a + b)2
Nota:
Se recomienda volver al tema factorización para reforzar su comprensión.
Cuadrado de la diferencia de dos cantidades
a2 – 2ab + b2 = (a – b)2
El cuadrado de...
Regístrate para leer el documento completo.