Paradoja Zenon y otros
Zenón, filósofo griego nacido en Elea perteneciente a la escuela eleática (c. 490-430 a. C.), plantea una serie de paradojas entre las relaciones entre tiempo, espacio ymovimiento. Dentro de las más connotadas encontramos “La paradoja de Aquiles y la tortuga” y “La paradoja de la flecha”. A continuación, una breve explicación y descripción de estas últimas.
La Paradoja deAquiles y la tortuga
Zénon utiliza a Aquiles , un reconocido guerrero del cual se le atribuye el carácter de ser un gran velocista, el cual en una situación ficticia corre versus una tortuga. Lacual, esta última parte con una ventaja.
En dicha carrera, cuando Aquiles logra recorrer la distancia que llevaba de ventaja la tortuga, está ya había recorrido un cierto tramo. Por más que intentasealcanzar a la tortuga, esto se repite una y otra vez, siéndole imposible de alcanzar y sobrepasar a la tortuga.
Así, en la interpretación moderna, basada en el cálculo infinitesimal que eradesconocido en época de Zenón, se puede demostrar que Aquiles realmente alcanzará a la tortuga
La paradoja de la flecha
Se lanza una flecha. En teoría, al captar cada instante por separado, se obtendríaun estado de reposo de esta en un diferente tiempo. La sumatoria de estados de reposo concluye que dicha flecha nunca se mueve, indiferente del tiempo transcurrido. El movimiento es imposible.
Sinembargo, no se puede juzgar sólo un instante cualquiera. Es necesario comparar instantes adyacentes. La flecha al estar en diferentes posiciones, existe movimiento.
Ejemplos Fibonacci
• El númerode conejos coincide con cada uno de los términos de la sucesión de Fibonacci, a la hora de reproducirse. Se le atribuye a Leonardo da Vinci.
• Si trazamos una curva partiendo desde el origentendremos una espiral, cuyo tamaño aumenta progresivamente con los números de la secuencia de Fibonacci.
• La disposición de las hojas a lo largo de los tallos de las plantas es tal que permite a...
Regístrate para leer el documento completo.