Resolucion De Triangulos V
45. Calcula el área de cada uno de los triángulos siguientes, sabiendo:
a) b = 30 cm, A = 50º y B = 74º
b) a = 41 cm, C = 45º, y B = 75º
c) a = 18 cm, b = 15 cm, C = 19º 42'
d) a = 6 cm, b = 12 cm, A = 17º30'
e) a = 33 cm, b = 24 cm, c = 20 cm
Soluciones:
a) c = 30 · sen 56º/sen 74º Área = b/2 · c ·sen A = 15 · 30 · sen 56º· sen50º/sen 74º 297,303 cm2
b) c = 41 · sen 45º/sen 60º Área = a/2 · c ·sen B = 41 · 41 · sen 45º· sen 75º/2sen 60º 662,881cm2
c) Área = a · b · sen C /2 = 18 ·15 · sen 19º42'/2 45,709 cm2
d) Hay dos posibles triángulos:
d1) B 36º58'15,83'', C 125º31'44,17'', c 16,238 cm
Área = b · a · sin C/2 29,298 cm2
d2) B 143º1'44,17'', C 19º28'15,83'', c 6,651 cm
Área = b · a · sin C/2 12 cm2
e) Área =a · b · sen C / 2 ; cos C = (a2 + b2 - c2 )/2ab y sen C = , por tanto: cos C 0,79861 y sen C 0,60185 Área = 283,332 cm2
46. El ángulo entre los dos lados iguales de un triángulo isósceles es de 40º y el lado desigual tiene una longitud de 40 cm. ¿Cuál es la longitud de cada uno de los lados iguales del triángulo?
Solución: 58,48 cm cada uno, aproximadamente
Los ángulos iguales del triángulomiden 70º cada uno. Aplicando el teorema del seno:
l = 40 · sen 70º /sen 40º 58,48 cm
47. El ángulo agudo de un rombo mide 25º. El lado mide 13 cm. Calcula el área del rombo.
Solución: A 142,84 cm2
Aplicando el teorema del coseno, y , siendo D y d las dos diagonales del rombo.
Sacando factor común: y
Podemos calcular el área: A = d·D/2 142,84 cm2
48. Los lados de un triángulo miden 8cm, 11 cm y 13 cm, respectivamente. Calcula el valor del seno del ángulo más pequeño.
Solución: sen = 0,612836428. . .
El ángulo más pequeño es el opuesto al lado de longitud 8 cm. Aplicando el teorema del coseno:
Despejando::
Teniendo en cuenta que sin = , o utilizando la calculadora :
sen = 0,612836428. . .
49. Los tres ángulos de un triángulo miden 6 cm, 8 cm y 9 cm. Calculasus ángulos y su área.
Solución: 40,80º, 60,61º y 78,59º, 23,52 cm2 aproximadamente.
Aplicando el teorema del coseno se pueden obtener los ángulos: 40,80º, 60,61º y 78,59º
A = 9 · 8 · sen 40,80º /2 23,52 cm2
50. En un triángulo ABC, conocemos A = 34,5º, B = 78º y a + b = 43 cm. Calcula cuánto miden los lados a y b.
Solución: a 17,76 cm, b 25,24 cm
Podemos plantear: y se obtiene que: b 25,24 cm y a 17,76 cm
51. En un triángulo ABC, conocemos a = 15 cm, b = 11 cm y A + B = 104º. Calcula cuánto miden los ángulos A y B.
Solución: A 63 8'23,36'' y B = 40º 51' 36,64''
El ángulo C mide 76º
Aplicando el teorema del coseno podemos encontrar c 16,3146, para encontrar A y B:
sen A = 15 · sen76º/c A 63 8'23,36'' y B = 40º 51' 36,64''
52. En un triángulo ABC, conocemos A - B =16º, a = 23 cm y b = 19 cm. Calcula los ángulos del triángulo.
Solución: A 63º 52' 34,69'', B 47º 52' 34,69'' y C 68º 14' 50,62''
A = 16º + B
Por el teorema del seno:
23 · sen B = 19(sen 16º · cosB + sen B · cos 16º)
sen B (23 -19 · cos 16º) = 19 sen 16º· cos B
tg B = B 47º 52' 34,69''
A = 16º + B 63º 52' 34,69'' y C = 180º - A - B 68º 14' 50,62''
53. Demuestra que entodo triángulo ABC, se cumple la igualdad:
, conocida como Teorema de Nepper. (Indicación: debes usar el teorema del seno para escribir la relación entre a y b)
Solución:
Por el teorema del seno: a = . Sustituimos:
. c.q.d.
54. En los lados de un triángulo ABC se cumple que b - a = 1 y c - b = 1, y se tiene que cos A = 0,6. Calcula a, tg (B/2) y sin 2C
Solución: a = 1 tg (B/2) = y sin 2C=
Los lados son a, b = a + 1 y c = a + 2.
Planteamos el teorema del coseno y obtenemos la siguiente ecuación una vez simplificada:
a2 + 12a - 13 = 0, cuya solución positiva es a = 1
Para calcular B con el teorema del coseno obtenemos: cos B = 1/3, por lo que:
tg (B/ 2) =
Para calcular C aplicamos el teorema del coseno y se obtienen cos C = -1/2, por lo que C = 120º y sen 2C =
55. De un...
Regístrate para leer el documento completo.