Trigonometria
Los antiguos egipcios y los babilonios conocían ya los teoremas sobre las proporciones de los lados de los triángulos semejantes. Pero las sociedades pre-helénica carecían de la noción de una medida del ángulo y por lo tanto, los lados de los triángulos se estudiaron en su medida, un campo que se podría llamar "trilaterometría".
Los astrónomos babilonios llevaron registrosdetallados sobre la salida y puesta de las estrellas, el movimiento de los planetas y los eclipses solares y lunares, todo lo cual requiere la familiaridad con la distancia angular medida sobre la esfera celeste. Sobre la base de una interpretación de la tablilla cuneiforme Plimpton 322 (c. 1900 aC), algunos incluso han afirmado que los antiguos babilonios tenían una tabla de secantes. Hoy, sinembargo, hay un gran debate acerca de si se trata de una tabla de ternas pitagóricas, una tabla de soluciones de ecuaciones segundo grado, o una tabla trigonométrica.
Los egipcios, en el segundo milenio antes de Cristo, utilizaban una forma primitiva de la trigonometría, para la construcción de las pirámides. El Papiro de Ahmes, escrito por el escriba egipcio Ahmes (c. 1680-1620 aC), contiene elsiguiente problema relacionado con la trigonometría:
"Si una pirámide es de 250 codos de alto y al lado de su base de 360 codos de largo, ¿cuál es su Seked?"
La solución, al problema, es la relación entre la mitad del lado de la base de la pirámide a su altura. En otras palabras, la cantidad que encontró para la seked es la cotangente del ángulo que forman la base de la pirámide y su cara.Angulo:
Un ángulo es la parte del plano comprendida entre dos semirrectas que tienen el mismo punto de origen.1 Suelen medirse en unidades tales como el radián, el grado sexagesimal o el grado centesimal.
Pueden estar definidos sobre superficies planas (trigonometría plana) o curvas (trigonometría esférica). Se denomina ángulo diedro al espacio comprendido entre dos semiplanos cuyo origen común esuna recta. Un ángulo sólido es el que abarca un objeto visto desde un punto dado, midiendo su tamaño aparente.
Existen básicamente dos formas de definir un ángulo en el plano:
1. Forma geométrica: Se denomina ángulo a la amplitud entre dos líneas de cualquier tipo que concurren en un punto común llamado vértice. Coloquialmente, ángulo es la figura formada por dos líneas con origen común. Elángulo entre dos curvas es el ángulo que forman sus rectas tangentes en el punto de intersección.
2. Forma trigonométrica: Es la amplitud de rotación o giro que describe un segmento rectilíneo en torno de uno de sus extremos tomado como vértice desde una posición inicial hasta una posición final. Si la rotación es en sentido levógiro (contrario a las manecillas del reloj), el ángulo se considerapositivo. Si la rotación es en sentido dextrógiro (conforme a las manecillas del reloj), el ángulo se considera negativo.
Triángulos:
Un triángulo, en geometría, es un polígono determinado por tres rectas que se cortan dos a dos en tres puntos (que no se encuentran alineados). Los puntos de intersección de las rectas son los vértices y los segmentos de recta determinados son los lados deltriángulo. Dos lados contiguos forman uno de los ángulos interiores del triángulo.
Por lo tanto, un triángulo tiene 3 ángulos interiores, 3 lados y 3 vértices.
Si está contenido en una superficie plana se denomina triángulo, o trígono, un nombre menos común para este tipo de polígonos. Si está contenido en una superficie esférica se denomina triángulo esférico. Representado, en cartografía, sobrela superficie terrestre, se llama triángulo geodésico.
Grado:
En matemáticas existen diferentes significados de la palabra grado dependiendo del área matemática de que se trate. Todas las definiciones tienen como resultado un número natural que expresa el grado.
Radian:
El radián es la unidad de ángulo plano en el Sistema Internacional de Unidades. Representa el ángulo central en una...
Regístrate para leer el documento completo.