Aplicaciones geometria descriptiva

Solo disponible en BuenasTareas
  • Páginas : 9 (2114 palabras )
  • Descarga(s) : 0
  • Publicado : 15 de noviembre de 2010
Leer documento completo
Vista previa del texto
La geometría descriptiva tiene por objeto la representación de las figuras geométricas del espacio en un plano, de tal manera que las construcciones en el espacio se puedan reducir a construcciones (más cómodas) en el plano.
Desde la antigüedad, el hombre ha sentido siempre la necesidad de representar gráficamente el entorno que le rodea, como lo demuestran los dibujos encontrados en las cuevasprehistóricas, pero no es hasta el renacimiento cuando se intenta representar la profundidad.
Geometría demostrativa primitiva
El origen del término geometría es una descripción precisa del trabajo de los primeros geómetras, que se interesaban en problemas como la medida del tamaño de los campos o el trazado de ángulos rectos para las esquinas de los edificios. Este tipo de geometría empírica,que floreció en el Antiguo Egipto, Sumeria y Babilonia, fue refinado y sistematizado por los griegos.
En el siglo VI a.C. el matemático Pitágoras colocó la piedra angular de la geometría científica al demostrar que las diversas leyes arbitrarias e inconexas de la geometría empírica se pueden deducir como conclusiones lógicas de un número limitado de axiomas, o postulados. Estos postulados fueronconsiderados por Pitágoras y sus discípulos como verdades evidentes; sin embargo, en el pensamiento matemático moderno se consideran como un conjunto de supuestos útiles pero arbitrariosDesde la antigüedad, el hombre ha sentido siempre la necesidad de representar gráficamente el entorno que le rodea, como lo demuestran los dibujos encontrados en las cuevas prehistóricas, pero no es hasta elrenacimiento cuando se intenta representar la profundidad.Desde la antigüedad, el hombre ha sentido siempre la necesidad de representar gráficamente el entorno que le rodea, como lo demuestran los dibujos encontrados en las cuevas prehistóricas, pero no es hasta el renacimiento cuando se intenta representar la profundidad.
Un ejemplo típico de los postulados desarrollados y aceptados por los matemáticosgriegos es la siguiente afirmación: "una línea recta es la distancia más corta entre dos puntos". Un conjunto de teoremas sobre las propiedades de puntos, líneas, ángulos y planos se puede deducir lógicamente a partir de estos axiomas.
Entre estos teoremas se encuentran: "la suma de los ángulos de cualquier triángulo es igual a la suma de dos ángulos rectos", y "el cuadrado de la hipotenusa deun triángulo rectángulo es igual a la suma de los cuadrados de los otros dos lados" (conocido como teorema de Pitágoras).
La geometría demostrativa de los griegos, que se ocupaba de polígonos y círculos y de sus correspondientes figuras tridimensionales, fue mostrada rigurosamente por el matemático griego Euclides, en su libro "Los elementos". El texto de Euclides, a pesar de sus imperfecciones,ha servido como libro de texto básico de geometría hasta casi nuestros días.
Primeros problemas geométricos
Los griegos introdujeron los problemas de construcción, en los que cierta línea o figura debe ser construida utilizando sólo una regla de borde recto y un compás. Ejemplos sencillos son la construcción de una línea recta dos veces más larga que una recta dada, o de una recta que divide unángulo dado en dos ángulos iguales.
Tres famosos problemas de construcción que datan de la época griega se resistieron al esfuerzo de muchas generaciones de matemáticos que intentaron resolverlos: la duplicación del cubo (construir un cubo de volumen doble al de un determinado cubo), la cuadratura del círculo (construir un cuadrado con área igual a un círculo determinado) y la trisección del ángulo(dividir un ángulo dado en tres partes iguales). Ninguna de estas construcciones es posible con la regla y el compás, y la imposibilidad de la cuadratura del círculo no fue finalmente demostrada hasta 1882.
Los griegos, y en particular Apolonio de Perga, estudiaron la familia de curvas conocidas como cónicas y descubrieron muchas de sus propiedades fundamentales. Las cónicas son importantes...
tracking img