Concepto de matriz

Solo disponible en BuenasTareas
  • Páginas : 5 (1222 palabras )
  • Descarga(s) : 0
  • Publicado : 9 de septiembre de 2010
Leer documento completo
Vista previa del texto
Concepto de matriz
Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Cada uno de los números de que consta la matriz se denomina elemento. Un elemento se distingue de otro por la posición que ocupa, es decir, la fila y la columna a la que pertenece.
El número de filas y columnas de una matriz se denomina dimensión de unamatriz. Así, una matriz será de dimensión: 2x4, 3x2, 2x5,... Sí la matriz tiene el mismo número de filas que de columna, se dice que es de orden: 2, 3, ...
El conjunto de matrices de m filas y n columnas se denota por Amxn o (aij), y un elemento cualquiera de la misma, que se encuentra en la fila i y en la columna j, por aij.
Dos matrices son iguales cuando tienen la misma dimensión y loselementos que ocupan el mismo lugar en ambas, son iguales.
Matriz fila
Una matriz fila está constituida por una sola fila.

Matriz columna
La matriz columna tiene una sola columna

Matriz rectangular
La matriz rectangular tiene distinto número de filas que de columnas, siendo su dimensión mxn.

Matriz cuadrada
La matriz cuadrada tiene el mismo número de filas que de columnas.
Los elementos dela forma aii constituyen la diagonal principal.
La diagonal secundaria la forman los elementos con i+j = n+1.

Matriz nula
En una matriz nula todos los elementos son ceros.

Matriz triangular superior
En una matriz triangular superior los elementos situados por debajo de la diagonal principal son ceros.

Matriz triangular inferior
En una matriz triangular inferior los elementos situadospor encima de la diagonal principal son ceros.

Matriz diagonal
En una matriz diagonal todos los elementos situados por encima y por debajo de la diagonal principal son nulos.

Matriz escalar
Una matriz escalar es una matriz diagonal en la que los elementos de la diagonal principal son iguales.

Matriz identidad o unidad
Una matriz identidad es una matriz diagonal en la que los elementosde la diagonal principal son iguales a 1.

Matriz traspuesta
Dada una matriz A, se llama matriz traspuesta de A a la matriz que se obtiene cambiando ordenadamente las filas por las columnas

(At)t = A
(A + B)t = At + Bt
(α ·A)t = α· At
(A ·  B)t = Bt · At
Matriz regular
Una matriz regular es una matriz cuadrada que tiene inversa.
Matriz singular
Una matriz singular no tiene matrizinversa.
Matriz idempotente
Una matriz, A, es idempotente si:
A2 = A.
Matriz involutiva
Una matriz, A, es involutiva si:
A2 = I.
Matriz simétrica
Una matriz simétrica es una matriz cuadrada que verifica:
A = At.
Matriz antisimétrica o hemisimétrica
Una matriz antisimétrica o hemisimétrica es una matriz cuadrada que verifica:
A = -At.
Matriz ortogonal
Una matriz es ortogonal si verificaque:
A·At = I.
EFINICIÓN DE MATRIZ
En general, una matriz es un conjunto ordenado en una estructura de filas y columnas. Los elementos de este conjunto pueden ser objetos matemáticos de muy variados tipos, aunque de forma particular, trabajaremos exclusivamente con matrices formadas por números reales.
Normalmente las matrices son designadas por letras mayúsculas.
Los elementos de una matrizse identifican por la fila y la columna que ocupan. Así, designaremos por a32 el elemento que está situado en la tercera fila y segunda columna de la matriz A.
El número de filas y columnas que tiene una matriz se llama dimensión de la matriz.
Dos matrices son iguales si son de igual dimensión y coincide el valor de los elementos que ocupan la misma posición en ambas.
Suma de Matrices
Dadaslas matrices m-por-n A y B, su suma A + B es la matriz m-por-n calculada sumando los elementos correspondientes (i.e. (A + B)[i, j] = A[i, j] + B[i, j] ). Es decir, sumar cada uno de los elemetos homologos de las matrices a sumar. Por ejemplo:

Propiedades de la suma de matrices
* Asociativa
Dadas las matrices m-por-n A , B y C
A + (B + C) = (A + B) + C...
tracking img