Daniel

Solo disponible en BuenasTareas
  • Páginas : 3 (565 palabras )
  • Descarga(s) : 0
  • Publicado : 6 de enero de 2010
Leer documento completo
Vista previa del texto
Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas a un conjunto de restricciones sobre un conjunto de variables reales desconocidas, con unfunción objetivo a maximizar, cuando alguna de las restricciones o la función objetivo no son lineales.
La programación no lineal se refiere a modelos matemáticos complicados, donde las funcionesobjetivo y otras funciones, no necesariamente son lineales.
Los modelos de programación no lineal pueden aplicarse para resolver problemas de cotización de proyectos, diseño estructural, ajuste decurvas, equivalencia determinística en problemas aleatorios, asignación de recursos, etc.
Los problemas no lineales pueden ser:
Restringidos: cuando se tienen restricciones (lineales o nolineales),
No-restringidos: cuando no se tienen restricciones y sólo se optimiza la función objetivo, que desde luego, no es lineal,
Continuos: cuando todas las variables y funcionesson continuas,
Discretos: cuando alguna de las variables y/o funciones es discreta,
Diferenciables: cuando todas las funciones del problema son doblemente diferenciables,Con restricciones de igualdad y/o desigualdad,
Convexos, cuadráticos, separables,
Con una sola variable independiente o con varias variables independientes.
Una de lascaracterísticas que hace que los problemas de optimización no lineal sean mucho más difíciles de resolver que los problemas lineales, es que la solución óptima no se encuentra en un punto extremo de laregión de factibilidad.
La gran desventaja de los métodos de optimización no lineales, es que, generalmente encuentran un óptimo relativo o local, más no el óptimo local o absoluto, además sepresentan de muchas formas distintas y no se dispone de un algoritmo que resuelva todos estos tipos especiales de problemas.
MAXIMOS Y MINIMOS
Mínimo (fuerte): Un punto extremo X0 de una función f(X0)...
tracking img