Etica

Solo disponible en BuenasTareas
  • Páginas : 5 (1036 palabras )
  • Descarga(s) : 0
  • Publicado : 6 de febrero de 2012
Leer documento completo
Vista previa del texto
Método de Newton - Raphson

En análisis numérico, el método de Newton (conocido también como el método de Newton-Raphson o el método de Newton-Fourier) es un algoritmo eficiente para encontrar aproximaciones de los ceros o raíces de una función real. También puede ser usado para encontrar el máximo o mínimo de una función, encontrando los ceros de su primera derivada.
El método deNewton-Raphson es llamado así por la razón de que el matemático inglés Joseph Raphson (contemporáneo de Newton) se hizo miembro de la Royal Society en 1691 por su libro aequationum universalis Análisis que publico en 1690 y el cual contenía este método para aproximar raíces. Mientras que Newton en su libro Método de las fluxiones describe el mismo método escrito en 1671, pero publicado hasta 1736, lo quesignifica que Raphson había publicado este resultado casi 50 años antes, aunque no fue tan popular como los trabajos de Newton y se le reconoció posteriormente.
El método de Newton-Raphson es un método abierto, en el sentido de que su convergencia global no está garantizada. La única manera de alcanzar la convergencia es seleccionar un valor inicial lo suficientemente cercano a la raíz buscada. Así,se ha de comenzar la iteración con un valor razonablemente cercano al cero (denominado punto de arranque o valor supuesto). La relativa cercanía del punto inicial a la raíz depende mucho de la naturaleza de la propia función; si ésta presenta múltiples puntos de inflexión o pendientes grandes en el entorno de la raíz, entonces las probabilidades de que el algoritmo diverja aumentan, lo cual exigeseleccionar un valor supuesto cercano a la raíz. Una vez que se ha hecho esto, el método linealiza la función por la recta tangente en ese valor supuesto. La abscisa en el origen de dicha recta será, según el método, una mejor aproximación de la raíz que el valor anterior. Se realizarán sucesivas iteraciones hasta que el método haya convergido lo suficiente.
Sea f: [a, b] -> R funciónderivable definida en el intervalo real [a, b]. Empezamos con un valor inicial x0 y definimos para cada número natural n

Donde f ' denota la derivada de f.
Nótese que el método descrito es de aplicación exclusiva para funciones de una sola variable con forma analítica o implícita cognoscible. Existen variantes del método aplicables a sistemas discretos que permiten estimar las raíces de la tendencia,así como algoritmos que extienden el método de Newton a sistemas multivariables, sistemas de ecuaciones, etc.
Obtención del Algoritmo
Tres son las formas principales por las que tradicionalmente se ha obtenido el algoritmo de Newton-Raphson.
La primera de ellas es una simple interpretación geométrica. En efecto, atendiendo al desarrollo geométrico del método de la secante, podría pensarse enque si los puntos de iteración están lo suficientemente cerca (a una distancia infinitesimal), entonces la secante se sustituye por la tangente a la curva en el punto. Así pues, si por un punto de iteración trazamos la tangente a la curva, por extensión con el método de la secante, el nuevo punto de iteración se tomará como la abscisa en el origen de la tangente (punto de corte de la tangente conel eje X). Esto es equivalente a linealizar la función, es decir, f se reemplaza por una recta tal que contiene al punto (x0, f (x0)) y cuya pendiente coincide con la derivada de la función en el punto, f'(x0). La nueva aproximación a la raíz, x1, se logra la intersección de la función lineal con el eje X de abscisas. Matemáticamente:

Ilustración de una iteración del método de Newton (la funciónf se demuestra en azul y la línea de la tangente está en rojo). Vemos que xn + 1 es una aproximación mejor que xn para la raíz x de la función f.
En la ilustración adjunta del método de Newton se puede ver que xn + 1 es una mejor aproximación que xn para el cero (x) de la función f.
Una forma alternativa de obtener el algoritmo es desarrollando la función f (x) en serie de Taylor, para un...
tracking img