La media aritmètica

Solo disponible en BuenasTareas
  • Páginas : 6 (1463 palabras )
  • Descarga(s) : 7
  • Publicado : 25 de agosto de 2009
Leer documento completo
Vista previa del texto
La Media Aritmética ():

La medida de tendencia central más ampliamente usada es la media aritmética, usualmente abreviada como la media y denotada por  (léase como "X barra").

La media aritmética para datos no agrupados

Si se dispone de un conjunto de n números, tales como X1, X2, X3,…,Xn, la media aritmética de este conjunto de datos se define como "la suma de los valores de los ninúmeros , divididos entre n", lo que usando los símbolos explicados anteriormente , puede escribirse como:

[pic]

Ejemplo:

Se tienen las edades de cinco estudiantes universitarios de Ier año, a saber: 18,23, 27,34 y 25., para calcular la media aritmética (promedio de las edades, se tiene que:

[pic]

La media aritmética para datos agrupados

Si losdatos se presentan en una tabla de distribución de frecuencias, no es posible conocer los valores individuales de cada una de las observaciones, pero si las categorías en las cuales se hallan. Para poder calcular la media, se supondrá que dentro de cada categoría, las observaciones se distribuyen uniformemente dentro alrededor del punto medio de la clase, por lo tanto puede considerarse que todas lasobservaciones dentro de la clase ocurren en el punto medio, por lo expuesto la media aritmética para datos agrupados puede definirse de la siguiente manera:

Si en una tabla de distribución de frecuencia, con r clases, los puntos medio son: X1, X2, X3,…,Xn; y las respectivas frecuencias son f1, f2, f3, … , fn, la media aritmética se calcula de la siguiente manera:

[pic]

donde: N= número total de observaciones, por tanto Σfi puede simplificarse y escribirse como N ( N= Σfi )

Ejemplo:

Si se toman los datos del ejemplo resuelto al construir la tabla de distribución de frecuencia de las cuentas por cobrar de Cabrera’s y Asociados que fueron los siguientes:

Clases 1 2 3 4 5 6

Puntos Medios (Xi) 14,628 29,043 43.458 57,873 72.288 86.703

Frecuencias (fi) 10 4 53 3 5

Al calcular la cuenta promedio por cobrar (media aritmética) de estos datos se tiene lo siguiente:

[pic]

Media aritmética ponderada

Por otro lado, si al promediar los datos estos tienen diferentes pesos, entonces estamos ante un caso de media aritmética ponderada, que puede definirse de la siguiente manera

Definición:

Sea dado un conjunto deobservaciones, tales como X1, X2; X3; … ; Xn; y un conjunto de valores p1, p2; p3; … ; pn; asociado con cada observación Xi respectivamente, que reciben el nombre de factores de ponderación, entonces la media ponderada se calcula como:

[pic]

Ejemplo:

En el curso de estadística del Prof. Cabrera la nota semestral se calcula como una media ponderada. Por cuanto que el promedio de laboratoriosrepresenta el 30% de la nota semestral. El promedio de ejercicios parciales representa el 30% y el examen semestral el restante 40%.

Si obtiene en este curso los siguientes promedios al final del semestre: laboratorios 90 pts. Parciales 75% pts. Y en el examen semestral 70 pts.; el promedio semestral se calcula de la siguiente forma.:

[pic]

La nota semestral de 77.5 corresponde a "C".o Propiedades de la media aritmética
o Puede ser calculada en distribuciones con escala relativa y de intervalos
o .Todos los valores son incluidos en el cómputo de la media.
o Una serie de datos solo tiene una media.
o Es una medida muy útil para comparar dos o más poblaciones
o Es la única medida de tendencia central donde la suma de las desviaciones de cada valorrespecto a la media es igual a cero.
o Por lo tanto podemos considerar a la media como el punto de balance de una serie de datos.
• Desventajas de la media aritmética
o Si alguno de los valores es extremadamente grande o extremadamente pequeño, la media no es el promedio apropiado para representar la serie de datos.
o No se puede determinar si en una distribución de frecuencias hay...
tracking img