Precursosres de la probabilidad

Solo disponible en BuenasTareas
  • Páginas : 5 (1187 palabras )
  • Descarga(s) : 0
  • Publicado : 30 de noviembre de 2010
Leer documento completo
Vista previa del texto
CONTEXTO HISTÓRICO Y PRECURSORES
A partir de esta etapa con el avance en las matemáticas y la filosofía, se empieza a dar una explicación coherente a muchos fenómenos que no seguían un patrón determinístico, sino aleatorio. Es el caso de todos los fenómenos relativos a la probabilidad de los sucesos, concretados en este tiempo fundamentalmente en los juegos de azar.
En este periodo delRenacimiento es cuando empiezan a surgir de manera más seria inquietudes entorno a contabilizar el número de posibles resultados de un dado lanzado varias veces, o problemas más prácticos sobre cómo repartir las ganancias de los jugadores cuando el juego se interrumpe antes de finalizar. Como vemos estas inquietudes surgían más como intentos de resolver problemas “cotidianos” con el fin de ser justos enlas apuestas y repartos o incluso de conocer las respuestas para obtener ventajas y en consecuencia mayores ganancias respecto a otros jugadores y mucho menos de inquietudes matemáticas verdaderas. De hecho la idea de modelizar el azar mediante las matemáticas aún no estaba plenamente presente en los intelectuales de la época.

Pacioli, Cardano y Tartaglia:

Uno de los primeros problemasdedicados a contabilizar el número de posibles resultados al lanzar un dado varias veces podemos encontrarlo aún en la Edad Media, en el poema De Vetula de Richard de Fournival (1200-1250) donde afirma correctamente que si se lanzan tres dados hay 216 combinaciones posibles y calcula acertadamente
los diferentes valores para la suma de los tres dados. Aunque ahora puede parecer una cuestión trivial,en aquella época no lo era, y otros autores se equivocaron al intentar resolverla, generalmente porque no tenían en cuenta las posibles permutaciones de una misma combinación.
Pero el problema más importante relativo a los juegos de azar era el conocido como “problema del reparto de apuestas” que distribuía las ganancias entre jugadores cuando la partida se interrumpía antes de finalizar. Esteproblema fue abordado por Luca Pacioli (1445-1517) quien en 1487 propuso estos dos problemas particulares: un juego en el que el premio es de 22 ducados que consiste en alcanzar 60 puntos se interrumpe cuando un equipo lleva 50 puntos y el otro 30; y tres arqueros que compiten por un premio de 6 ducados lanzan flechas hasta que uno de ellos haga 6 dianas, siendo interrumpidos cuando el primero deellos lleva 4 dianas, el segundo 3 y el tercero 2. ¿Cómo deben repartirse los premios entre los contendientes? Pacioli propuso que el premio debería ser repartido en función de las victorias obtenidas anteriormente: así, el premio del primer problema se dividía en 60×5/8 ducados para el primer equipo y en 60×3/8 para el segundo; para el problema de los arqueros, el premio se dividía en laproporción 4/9, 3/9 y 2/9. Como más tarde se pondría de manifiesto, esta solución obtenida por Pacioli es incorrecta.
Fue Girolamo Cardano (1501-1576) quien escribió la primera obra importante relacionada con el cálculo de probabilidades en los juegos de azar. Fue en 1565 y se llamaba Libro de los juegos de azar. Además Cardano se había ocupado anteriormente del problema del reparto de apuestas y en 1539llegó a la conclusión de que la solución de Pacioli era incorrecta porque al considerar tan sólo el número de juegos ganados por cada equipo, no contaba cuántos juegos debían ganar para hacerse con el premio. Cardano propuso como solución del problema que si n es el número de juegos totales y a y b los juegos ganados por cada equipo, el premio debía repartirse de la siguiente manera:[1+2+…+(n-b)]: [1+2+…(n-a)].
Esta solución es, en general, incorrecta y sólo da resultados válidos en casos particulares.
Niccolo Tartaglia (1499–1557), también intentó resolver este problema y en 1556 publicó un libro en el que descartaba la solución dada por Pacioli y daba su propio solución: si un equipo ha ganado a puntos y el otro b, se juega a n puntos y el premio total es P, las ganancias...
tracking img