Sistemas lti

Solo disponible en BuenasTareas
  • Páginas : 10 (2432 palabras )
  • Descarga(s) : 0
  • Publicado : 10 de septiembre de 2012
Leer documento completo
Vista previa del texto
Sistemas Lineales Invariantes en el Tiempo

Para comenzar a estudiar los sistemas, debemos primero considerar el concepto de señal.


Si bien es un término de muy amplio alcance, en el contexto que nos atañe consideramos como señal a toda variación de una cantidad física (por lo general con el tiempo) susceptible de ser representada matemáticamente y de la cual podemos obteneralguna información o realizar algún cambio.


Según su naturaleza podemos clasificar a las señales en dos grupos, a saber: las que pueden definirse en cada instante de un determinado intervalo, llamadas señales de tiempo continuo, y aquéllas que pueden representarse como una sucesión de de valores ordenados mediante un índice entero, llamadas señales de tiempo discreto. (El uso de la palabra"Tiempo" establecida por el uso alude a que la mayoría de las señales procesadas dependen del tiempo, sin ser éste el caso general).


Con esto, definiremos como sistema a cualquier ente físico o proceso capaz de recibir una señal, denominada de entrada, o excitación ( x(t) ), y transformarla en otra señal que denominaremos de salida o respuesta. ( y(t) )
Según la naturaleza de lasseñales que los sistemas procesan, usualmente se los clasifica tambien como "de tiempo continuo" o "de tiempo discreto".


Como puede apreciarse, las definiciones previas son de carácter muy general. Esto pone en evidencia una de las grandes ventajas de la teoría de señales y sistemas, esto es: puede aplicarse al estudio de una gran cantidad de problemas reales de muy diversa naturaleza física.En este trabajo centraremos nuestra atención en un tipo particular de sistemas, denominados “Sistemas Lineales e Invariantes en el Tiempo” o “SLTI”,

Nota: Si bien este trabajo está desarrollado en tiempo continuo, pueden hallarse relaciones totalmente análogas para los sistemas de tiempo discreto

Linealidad

Se dice que un sistema es lineal si cumple con el llamado principio desuperposición, el cual a su vez se compone de dos partes :

1. Homogeneidad: [pic] (1)
2. Aditividad: [pic] (2)


Combinando la (1) y la (2): [pic] (superposición)


Evidentemente, esto se cumplirá si el sistema, para obtener la salida, efectúa sobre la señal de entrada operaciones que son matemáticamente lineales, como ser: suma, multiplicación por una constante,diferenciación e integración.


A partir de esto es importante entender porqué las ecuaciones íntegro-diferenciales lineales son la herramienta apropiada para modelar matemáticamente la relación entrada-salida de este tipo de sistemas, ya que en ellas, en su forma general, intervienen todas las operaciones antedichas.


Invariabilidad Temporal

Decimos que un sistema es invariante en el tiempo, sila respuesta del mismo no depende del momento en que es excitado, formalmente:






[pic] (3)

Esta es una propiedad importante del sistema, puesto que lo hace más predecible y posibilita su análisis por medio de los métodos que estudiaremos mas adelante.
Físicamente, la invariabilidad temporal implica que los constituyentes de nuestro sistema, no se alterarán y conservarán suspropiedades con el paso del tiempo: "sus parámetros son constantes"
Por ejemplo, un circuito electrónico no sería invariante en el tiempo si sus componentes (resistencias, inductores, condensadores, etc...) cambiasen de valor, como sucede por degradación de los materiales que los componen, lo cual en general es un proceso lento.


Es importante señalar que la invariabilidad temporal delsistema establece que la ecuación diferencial lineal que lo define sea a coeficientes constantes, pues dichos coeficientes están definidos por los componentes físicos del sistema (resistencias, inductores, masas, resortes, amortiguadores, etc.).

Consecuencias Importantes

El hecho de que un sistema sea LTI, hará más manejable su análisis: puesto que es posible descomponer a una señal...
tracking img