Tareas

Solo disponible en BuenasTareas
  • Páginas : 5 (1219 palabras )
  • Descarga(s) : 0
  • Publicado : 2 de mayo de 2010
Leer documento completo
Vista previa del texto
L293B L293E
PUSH-PULL FOUR CHANNEL DRIVERS
s s s s s s

OUTPUT CURRENT 1A PER CHANNEL PEAK OUTPUT CURRENT 2A PER CHANNEL (non repetitive) INHIBIT FACILITY HIGH NOISE IMMUNITY SEPARATE LOGIC SUPPLY OVERTEMPERATURE PROTECTION

DIP16

POWERDIP(16+2+2)

DESCRIPTION The L293B and L293E are quad push-pull drivers capable of delivering output currents to 1A per channel. Each channel iscontrolled by a TTLcompatible logic input and each pair of drivers (a full bridge) is equipped with an inhibit input which turns off all four transistors. A separate supply input is provided for the logic so that it may be run off a lower voltage to reduce dissipation. Additionally, the L293E has external connection of PIN CONNECTION (Top view)

ORDERING NUMBERS: L293B L293E

sensing resistors, forswitchmode control. The L293B and L293E are package in 16 and 20pin plastic DIPs respectively ; both use the four center pins to conduct heat to the printed circuit board.

POWERDIP (16+2+2) - L293E
DIP16 - L293B

July 2003

1/12

L293E L293B
BLOCK DIAGRAMS
DIP16 - L293B

POWERDIP (16+2+2) - L293E

2/12

L293E L293B
SCHEMATIC DIAGRAM

(*) In the L293 these points are notexternally available. They are internally connected to the ground (substrate). O Pins of L293 () Pins of L293E.

ABSOLUTE MAXIMUM RATINGS
Symbol Vs Vss Vi Vinh Iout Ptot Tstg, Tj Parameter Supply Voltage Logic Supply Voltage Input Voltage Inhibit Voltage Peak Output Current (non repetitive t = 5ms) Total Power Dissipation at Tground-pins = 80°C Storage and Junction Temperature Value 36 36 7 7 2 5–40 to +150 Unit V V V V A W
oC

3/12

L293E L293B
THERMAL DATA
Symbol Rth j-case Rth j-amb Parameter Thermal Resistance Junction-case Thermal Resistance Junction-ambient Max. Max. Value 14 80 Unit
o o

C/W C/W

ELECTRICAL CHARACTERISTCS
Symbol Vs
V

Parameter Supply Voltage Logic Supply Voltage Total Quiescent Supply Current

Test Condition

Min.
V

Typ.

Max. 36 36

UnitV V mA mA mA mA mA mA V

ss

ss

4.5 Vi = L; Io = 0; Vinh = H Vi = h; Io = 0; Vinh = H Vinh = L 2 16 44 16 16 -0.3 VSS ≤ 7V VSS > 7V Vil = 1.5V 2.3V ≤ VIH ≤ VSS - 0.6V -0.3 VSS ≤7V VSS > 7V 2.3 2.3 -30 1.4 1.2 30 2.3 2.3

Is

6 24 4 60 22 24 1.5

Iss

Total Quiescent Logic Supply Current

Vi = L; Io = 0; Vinh = H Vi = h; Io = 0; Vinh = H Vinh = L

ViL

Input Low Voltage InputHigh Voltage

ViH
IiL IiH VinhL VinhH

Vss
7 -10 100 1.5
V

V
V µA µA V V V µA µA V V V ns ns ns ns

Low Voltage Input Current High Voltage Input Current Inhibit Low Voltage Inhibit High Voltage

ss

7 -100 ±10 1.8 1.8 2

IinhL IinhH VCEsatH VCEsatL VSENS tr tf ton toff

Low Voltage Inhibit Current High Voltage Inhibit Current Sink Output Saturation Voltage Sensing Voltage (pins4, 7, 14, 17) (**) Rise Time Fall Time Turn-on Delay Turn-off Delay

VinhL = 1.5V 2.3V ≤VinhH≤ Vss- 0.6V Io = 1A

Source Output Saturation Voltage Io = -1A

0.1 to 0.9 Vo (*) 0.9 to 0.1 Vo (*) 0.5 Vi to 0.5 Vo (*) 0.5 Vi to 0.5 Vo (*)

250 250 750 200

* See figure 1 ** Referred to L293E

TRUTH TABLE
Vi (each channel) H L H L
(*) High output impedance (**) Relative to theconsiderate channel

Vo H L X
(*)

Vinh (**) H H L L

X (*)

4/12

L293E L293B
Figure 1. Switching Timers

Figure 2. Saturation voltage versus Output Current

Figure 4. Sink Saturation Voltage versus Ambient Temperature

Figure 3. Source Saturation Voltage versus Ambient Temperature

Figure 5. Quiescent Logic Supply Current versus Logic Supply Voltage

5/12

L293E L293B
Figure 6.Output Voltage versus Input Voltage APPLICATION INFORMATION Figure 8. DC Motor Controls (with connection to ground and to the supply voltage)

Figure 7. Output Voltage versus Inhibit Voltage
Vinh H H L A H L X M1 Fast Motor Stop Run Free Running Motor Stop
L = Low H = High X = Don’t Care

B H L X Run

M2

Fast Motor Stop Free Running Motor Stop

Figure 9. Bidirectional DC Motor...
tracking img