Algebra booleana

Páginas: 20 (4766 palabras) Publicado: 19 de enero de 2010
Capítulo 4

Álgebra Booleana

• Álgebra Booleana
Ö La herramienta fundamental para el análisis y diseño de circuitos digitales es el Álgebra Booleana.
Esta álgebra es un conjunto de reglas matemáticas (similares en algunos aspectos al álgebra convencional), pero que tienen la virtud de corresponder al comportamiento de circuitos basados en dispositivos de conmutación (interruptores,relevadores, transistores, etc). En este capítulo se presentan los postulados que definen el álgebra booleana, se presentan en forma de teoremas los resultados más importantes, se presentan también los tres ejemplos clásicos de álgebras boolenas (lógica proposicional, álgebra de conjuntos, álgebra de switches) y herramientas básicas como tablas de verdad y diagramas de Venn. 4.1.- POSTULADOS DEL ÁLGEBRABOOLEANA El Álgebra de Boole, fue presentada originalmente por el inglés George Boole, en el año de 1854 en su artículo "An Investigation of the Laws of Thoght ... ", sin embargo, las primeras aplicaciones a circuitos de conmutación fueron desarrolladas por Claude Shannon en su tesis doctoral "Análisis simbólico de los circuitos de conmutación y relés" hasta 1938. A continuación se presentan lospostulados fundamentales del álgebra de Boole POSTULADOS DEL ÁLGEBRA DE BOOLE

O

Postulado 1. Definición. El álgebra booleana es un sistema algebraico definido en un conjunto B, el cual contiene dos o más elementos y entre los cuales se definen dos operaciones denominadas "suma u operación OR" ( + ) y "producto o multiplicación u operación AND" ( ), las cuales cumplen con las siguientespropiedades: Postulado 2. Existencia de Neutros. Existen en B el elemento neutro de la suma, denominado O y el neutro de la multiplicación, denominado 1, tales que para cualquier elemento x de s: (a) x + O = x (b) x. 1 = x

Postulado 3. Conmutatividad. Para cada x, y en B: (a) x+y = y+x (b) x y =y x

Postulado 4. Asociatividad. Para cada x, y, z en B: (a) x + (y + z) = (x + y) + z (b) x (y z) = (xy) z

Postulado 5. Distributividad. Para cada x, y, z en B: (a) x+(y z)=(x+y) (x+z) (b) x (y+z)=(x y)+(x z)

Postulado 6. Existencia de Complementos. Para cada x en B existe un elemento único denotado x (también denotado x’), llamado complemento de x tal que (a) x+x = 1 (b) x x = O

29

Capítulo 4
4.2.- EJEMPLOS DE ÁLGEBRAS DE BOOLE

Álgebra Booleana

En un principio algunos de lospostulados anteriores pueden parecer extraños, especialmente aquellos que son diferentes al álgebra con número reales (como el 5a, el 6a y el 6b), y puede ser difícil encontrar situaciones de interés que cumplan al pie de la letra con cada uno de ellos, sin embargo, existen varios ejemplos, de los cuales se presentan los siguientes tres clásicos, en los cuales se verifica que se trata de álgebras deBoole, es decir, que se cumple postulado por postulado. 4.2.1.- ÁLGEBRA DE CONJUNTOS 1.- Para este ejemplo el conjunto B es el conjunto de todos los conjuntos a tratar. La suma es la unión de conjuntos (U) y la multiplicación es la intersección (∩) de conjuntos. 2.- Existencia de neutros. El neutro de la unión es el conjunto vacío Φ, mientras que el neutro de la intersección es el conjuntouniverso U, ya que para cualquier conjunto arbitrario A, A U Φ = A y A ∩ U = A. 3.- Conmutatividad. La unión y la intersección son conmutativas, ya que para cualquier par de conjuntos A, B: A U B = B U A y A ∩B = B ∩A 4.- Asociatividad. La unión y la intersección de conjuntos son asociativas, ya que para cualesquiera tres conjuntos A, B, C: A U (B U C) = (A U B) U C y A ∩ (B ∩ C) = (A ∩ B) ∩ C 5.-Distributividad. La unión de conjuntos es distributiva sobre la intersección, y viceversa, la intersección es distributiva sobre la unión, ya que para cualesquiera tres conjuntos A, B, C: A U (B ∩ C) = (A U B) ∩ (A U C) y A ∩ (B U C) = (A ∩ B) U (A ∩ C) 6.- Existencia de complementos. El conjunto complemento Ac cumple con las propiedades deseadas: A U Ac = U y A ∩ Ac = Φ Algunos de los enunciados...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Algebra Booleana
  • Algebra Booleana
  • algebra booleana
  • Algebra booleana
  • Algebra Booleana
  • Algebra Booleana
  • Algebra booleana
  • ALGEBRA BOOLEANA

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS