Distribuci N De Bernoulli

Páginas: 5 (1137 palabras) Publicado: 9 de abril de 2015
Distribución de bernoulli
En teoría de probabilidad y estadística, la distribución de Bernoulli (o distribución dicotómica), nombrada así por el matemático y científico suizo Jakob Bernoulli, es una distribución de probabilidad discreta, que toma valor 1 para la probabilidad de éxito () y valor 0 para la probabilidad de fracaso ().
Si  es una variable aleatoria que mide el "número de éxitos", yse realiza un único experimento con dos posibles resultados (éxito o fracaso), se dice que la variable aleatoria  se distribuye como una Bernoulli de parámetro .

La fórmula será:

Su función de probabilidad viene definida por:

Un experimento al cual se aplica la distribución de Bernoulli se conoce como Ensayo de Bernoulli o simplemente ensayo, y la serie de esos experimentos como ensayosrepetidos
Distribución binomial
En estadística, la distribución binomial es una distribución de probabilidad discreta que cuenta el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija pde ocurrencia del éxito entre los ensayos. Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, sólo son posibles dos resultados. A uno deestos se denomina éxito y tiene una probabilidad de ocurrencia p y al otro, fracaso, con una probabilidad q = 1 - p. En la distribución binomial el anterior experimento se repite n veces, de forma independiente, y se trata de calcular la probabilidad de un determinado número de éxitos. Para n = 1, la binomial se convierte, de hecho, en una distribución de Bernoulli.
Para representar queuna variable aleatoria X sigue una distribución binomial de parámetros n y p, se escribe:


Ejemplo
Supongamos que se lanza un dado (con 6 caras) 50 veces y queremos conocer la probabilidad de que el número 3 salga 20 veces. En este caso tenemos una X ~ B(50, 1/6) y la probabilidad sería P(X=20):



Distribución de poisson
En teoría de probabilidad y estadística, la distribución de Poisson esuna distribución de probabilidad discreta que expresa, a partir de una frecuencia de ocurrencia media, la probabilidad de que ocurra un determinado número de eventos durante cierto período de tiempo. Concretamente, se especializa en la probabilidad de ocurrencia de sucesos con probabilidades muy pequeñas, o sucesos "raros".
La función de masa o probabilidad de la distribución de Poisson es

donde
k es el númerode ocurrencias del evento o fenómeno (la función nos da la probabilidad de que el evento suceda precisamente k veces).
λ es un parámetro positivo que representa el número de veces que se espera que ocurra el fenómeno durante un intervalo dado. Por ejemplo, si el suceso estudiado tiene lugar en promedio 4 veces por minuto y estamos interesados en la probabilidad de que ocurra k veces dentro de unintervalo de 10 minutos, usaremos un modelo de distribución de Poisson con λ = 10×4 = 40.
e es la base de los logaritmos naturales (e = 2,71828...)
Tanto el valor esperado como la varianza de una variable aleatoria con distribución de Poisson son iguales a λ. Los momentos de orden superior son polinomios de Touchard en λ cuyos coeficientes tienen una interpretación combinatorio. De hecho, cuandoel valor esperado de la distribución de Poisson es 1, entonces según la fórmula de Dobinski, el n-ésimo momento iguala al número de particiones de tamaño n.
La moda de una variable aleatoria de distribución de Poisson con un λ no entero es igual a , el mayor de los enteros menores que λ (los símbolos  representan la función parte entera). Cuando λ es un entero positivo, las modas son λ y λ − 1.La función generadora de momentos de la distribución de Poisson con valor esperado λ es

Las variables aleatorias de Poisson tienen la propiedad de ser infinitamente divisibles.
La divergencia Kullback-Leibler desde una variable aleatoria de Poisson de parámetro λ0 a otra de parámetro λ es





Distribución hipergeometrica
En teoría de la probabilidad la distribución hipergeométrica es...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Distribuci N De Bernoulli
  • DISTRIBUCI N DE BERNOULLI
  • La Distribuci N
  • DISTRIBUCI N
  • DISTRIBUCI N
  • DISTRIBUCI N
  • Distribuci n de la informaci n
  • CANALES DE DISTRIBUCI N

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS