ecuaciones diferenciales unidad 4
Sistemas de ecuaciones diferenciales lineales
4.1.1 Sistemas de ecuaciones diferenciales lineales
Por lo tanto, para estudiar las relaciones complejas, requerimos de varias ecuaciones diferentes para definir diferentes variables. Tal sistema es el sistema de ecuaciones diferenciales. Un sistema de ecuaciones diferenciales lineales se puede denotar como,
Aquí xi (t) esuna variable en términos de tiempo y el valor de i = 1, 2, 3, …, n. También A es una matriz que contiene todos los términos constantes, como [ai,j].
Dado que los coeficientes de la matriz constante A no están definidos explícitamente en términos de tiempo, por lo tanto, un sistema de ecuaciones diferenciales lineales es llamado a veces autónomo. La notación convencional general para el sistemade ecuaciones diferenciales lineales es,
dx/ dt = f(t, x, y)
dy/ dt = g(t, x, y)
El sistema anterior de ecuaciones diferenciales tendrá numerosas funciones para satisfacerla. Mediante la modificación de la variable tiempo obtendremos un conjunto de puntos que se encuentran en el plano de dos dimensiones x-y, los cuales se denominan trayectoria. La velocidad con respecto a estatrayectoria, en algún tiempo t es,
= (dx/ dt, dy/ dt)
Un ejemplo de un sistema de ecuaciones diferenciales lineales es el siguiente,
dx1/ dt = −4×1 + 2×2
dx2/ dt = 0×1 + −2×2
Con el fin de determinar el conjunto completo de fórmulas para la variable dependiente de tiempo xi(t) para todos los valores de i, es necesario obtener primero los vectores propios y valores propios de la matrizconstante A. En el caso que la matriz constante A posea un conjunto de valores propios repetidos para sus componentes, sería necesario un vector propio generalizado.
Este es t, toma en cuenta que los vectores propios y valores propios de la matriz constante puede ser un subconjunto de los números reales o también un subconjunto de los números complejos.
La representación de la matriz del problemaanterior es la siguiente, dx/ dt = A * x
En este caso, A es la matriz constante que puede ser representada como,
A =
Y x(t)T es un vector de variables definidas en términos de tiempo, el cual es representado como,
x(t)T =
dx/ dt =
En caso de que el vector propio de la matriz constante A sea un subconjunto de los números reales para este ejemplo, podemos escribir,
A = S * D *S-1
Aquí D es la matriz diagonal de la matriz de vectores propios de la matriz constante A y S es la matriz que contiene los vectores propios en forma de columnas, en el mismo orden como los valores propios se escriben en la matriz diagonal D.
En consecuencia, la forma de la matriz del ejemplo anterior se puede escribir como,
dx/ dt = A * x
dx1/ dt
dx2/ dt = −4 2
0 −4 * x1
x2Al igual que en una ecuación diferencial ordinaria, un sistema de ecuaciones diferenciales lineales también pueden formar un problema de valor inicial donde se dan varias condiciones iniciales.
4.1.2 Sistema de ecuación diferencial homogénea
Sabemos que una ecuación diferencial lineal es de la forma,
Si esta misma ecuación se transforma en la forma,
Obtenemos una ecuacióndiferencial lineal homogénea. Esta se da cuando la función conocida no está presente en la ecuación diferencial lineal, entonces se le llama una ecuación diferencial homogénea. Y si tenemos una gran cantidad de tales ecuaciones juntas, de manera tal que dependen unas de las otras, y definen colectivamente un problema común, entonces se les llama un sistema de ecuaciones diferenciales linealeshomogéneo.
Tales sistemas pueden ser resueltos de manera eficiente con la ayuda de las matrices, las cuales son denominadas matriz fundamental. Sean X1, X2 … X3 las soluciones de la matriz fundamental del sistema de entrada de ecuaciones diferenciales homogéneas, entonces puede representarse de manera condensada como,
En la ecuación anterior, las soluciones del sistema de ecuaciones...
Regístrate para leer el documento completo.