Ensayo De Calculo 2
ENSAYO
CALCULO 1
José Roberto Matul García
21/04/2012
INTRODUCCION
En la historia de las matemáticas fue el cálculo infinitesimal. Fue inventado alrededor de 1680 por Isaac Newton y Gottfried Leibniz de forma independiente. Leibniz lo público primero - pero Newton, incitado por amigos ultra patriotas – reclamo la prioridad y describió a Leibniz como un plagiario. La disputadaño las relaciones entre matemáticos y los ingleses y los de la Europa continental durante un siglo. Y los ingleses fueron los que más perdieron con ello.
CALCULO
El Cálculo constituye una de las grandes conquistas intelectuales de la humanidad. Una vez construido, la historia de la matemática ya no fue igual: la geometría, el álgebra y la aritmética, la trigonometría, se colocaronen una nueva perspectiva teórica. Detrás de cualquier invento, descubrimiento o nueva teoría, existe, indudablemente, la evolución de ideas que hacen posible su nacimiento. Es muy interesante prestar atención en el equipo de conocimientos que se acumula, desarrolla y evoluciona a través de los años para dar lugar, en algún momento en particular y a través de alguna persona en especial, alnacimiento de una nueva idea, de una nueva teoría, que seguramente se va a convertir en un descubrimiento importante para el estado actual de la ciencia y, por lo tanto merece el reconocimiento. El Cálculo cristaliza conceptos y métodos que la humanidad estuvo tratando de dominar por más de veinte siglos. Una larga lista de personas trabajaron con los métodos "infinitesimales" pero hubo que esperar hastael siglo XVII para tener la madurez social, científica y matemática que permitiría construir el Cálculo que utilizamos en nuestros días.
Cálculo diferencial es una parte importante del análisis matemático y dentro del mismo del cálculo infinitesimal. Consiste en el estudio del cambio de las variables dependientes cuando cambian las variables independientes de las funciones o campos objetos delanálisis. El principal objeto de estudio en el cálculo diferencial es la derivada. Una noción estrechamente relacionada es la de diferencial de una función.
En el estudio del cambio de una función, es decir, cuando cambian sus variables independientes es de especial interés para el cálculo diferencial el caso en el que el cambio de las variables es infinitesimal, esto es, cuando dicho cambiotiende a cero (se hace tan pequeño como se desee). Y es que el cálculo diferencial se apoya constantemente en el concepto básico del límite. El paso al límite es la principal herramienta que permite desarrollar la teoría del cálculo diferencial y la que lo diferencia claramente del álgebra.
Desde el punto de vista matemático de las funciones y la geometría, la derivada de una función en un ciertopunto es una medida de la tasa en la cual una función cambia conforme un argumento se modifica. Esto es, una derivada involucra, en términos matemáticos, una tasa de cambio. Una derivada es el cálculo de las pendientes instantáneas de en cada punto. Esto se corresponde a las pendientes de las tangentes de la gráfica de dicha función en sus puntos (una tangente por punto); Las derivadas pueden serutilizadas para conocer la concavidad de una función, sus intervalos de crecimiento, sus máximos y mínimos.
El cálculo de Newton y Leibniz seguramente no existiría. Su construcción fue parte importante de la revolución científica que vivió la Europa del siglo XVII. Los nuevos métodos enfatizaron la experiencia empírica y la descripción matemática de nuestra relación con la realidad.
En suscomienzos el cálculo fue desarrollado para estudiar problemas científicos y matemáticos:
Encontrar la tangente a una curva en un punto.
Encontrar el valor máximo o mínimo de una cantidad.
Encontrar la longitud de una curva, el área de una región y el volumen de un sólido.
Dada una fórmula de la distancia recorrida por un cuerpo en cualquier tiempo conocido, encontrar la velocidad y la aceleración...
Regístrate para leer el documento completo.