licenciada en educacion
Euclides (matemático) (fl. 300 a.
C.), matemático griego, cuya obra principal, Elementos de geometría, es un extenso tratado de matemáticas en 13 volúmenes sobre materias tales como geometría plana, proporciones en general, propiedades de los números, magnitudes inconmensurables y geometría del espacio. Probablemente estudió en Atenas con discípulos de Platón. Enseñó geometría enAlejandría y allí fundó una escuela de matemáticas. Los Cálculos (una colección de teoremas geométricos), los Fenómenos (una descripción del firmamento), la Óptica, la División del canon (un estudio matemático de la música) y otros libros se han atribuido durante mucho tiempo a Euclides. Sin embargo, la mayoría de los historiadores cree que alguna o todas estas obras (aparte de los Elementos) se lehan adjudicado erróneamente. Los historiadores también cuestionan la originalidad de algunas de sus aportaciones. Probablemente las secciones geométricas de los Elementos fueron en un principio una revisión de las obras de matemáticos anteriores, como Eudoxo, pero se considera que Euclides hizo diversos descubrimientos en la teoría de números.
Arquimedez:
Arquímedes fue capaz de utilizarlos infinitesimales de forma similar al moderno cálculo integral. A través de la reducción al absurdo (reductio ad absurdum), era capaz de contestar problemas mediante aproximaciones con determinado grado de precisión, especificando los límites entre los cuales se encontraba la respuesta correcta. Esta técnica recibe el nombre de método exhaustivo, y fue el sistema que utilizó para aproximar elvalor del número π. Para ello, dibujó un polígono regular inscrito y otro circunscrito a una misma circunferencia, de manera que la longitud de la circunferencia y el área del círculo quedan acotadas por esos mismos valores de las longitudes y las áreas de los dos polígonos. A medida que se incrementa el número de lados del polígono la diferencia se acorta, y se obtiene una aproximación más exacta.Partiendo de polígonos de 96 lados cada uno, Arquímedes calculó que el valor de π debía encontrarse entre 310/71 (aproximadamente 3,1408) y 31/7 (aproximadamente 3,1429), lo cual es consistente con el valor real de π. También demostró que el área del círculo era igual a π multiplicado por el cuadrado del radio del círculo. En su obra Sobre la Esfera y el Cilindro, Arquímedes postula que cualquiermagnitud, sumada a sí misma suficiente número de veces, puede exceder cualquier otra magnitud dada, postulado que es conocido como la propiedad arquimediana de los números reales.52
En su obra sobre la Medición del Círculo, Arquímedes ofrece un intervalo para el valor de la raíz cuadrada de 3 de entre 265/153 (aproximadamente 1,7320261) y 1351/780 (aproximadamente 1,7320512). El valor real se ubicaaproximadamente en 1,7320508, por lo que la estimación de Arquímedes resultó ser muy exacta. Sin embargo, introdujo este resultado en su obra sin explicación de qué método había utilizado para obtenerlo.
Newton:
Indudablemente el mayor aporte de Newton a las ciencias matematicas es la invención del Cálculo diferencial e intregral, pilar fundamental la ciencia actual.
En el ámbito de lamatemática pura Newton descubrió un método para el desarrollo de la potencia de un binomio elevado a cualquier número, este metodo se llama en su honor Binomio de Newton.
Newton realizó también contribuciones a otros temas matemáticos, entre los que podemos mencionar una clasificación de las curvas de tercer grado y trabajos sobre la teoría de las ecuaciones.
Hipatia:
De inicio, aunque lagrandeza de Hipatia como científica y matematica de gran nivel no se puede poner en duda, sí es un hecho que no se le conocen trabajos originales.
Sin embargo, podemos resumir su labor matemática como sigue:
1) Colaboró con su padre (Teón de Alejandría) en una nueva edición de los Elementos de Euclides, que se convirtió posteriormente en la base de las futuras versiones del famoso libro....
Regístrate para leer el documento completo.